Analysis of the Flow Performance of the Complex Cross-Section Module to Reduce the Sedimentation in a Combined Sewer Pipe
Abstract
:1. Introduction
2. Methodology
2.1. Complex Cross-Section Module Definition
2.2. CFD Model
2.3. Experimental Setup
3. Results
3.1. Velocity Distributions
3.2. Tractive Force
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Korea Construction Standards Code. Available online: http://www.kcsc.re.kr/Search/ListCodes/102057# (accessed on 11 February 2020).
- Starzec, M.; Dziopak, J.; Słyś, D. An analysis of stormwater management variants in urban catchments. Resources 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Kordana, S.; Słyś, D. An analysis of important issues impacting the development of stormwater management systems in Poland. Sci. Total Environ. 2020, 727, 138711. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, Y.J.; Kim, I.H.; Nam, I.G.; Kim, H.S.; Lee, J.K. Engineering of Water Supply and Sewerage; Goomibook: Seoul, Korea, 2008; pp. 267–277. [Google Scholar]
- Ashley, R.M.; Bertrand-Krajewski, J.L.; Hvitved-Jacobsen, T.; Verbanck, M. Solids in Sewers-Characteristics, Effects and Control of Sewer Solids and Associated Pollutants; IWA Publishing: London, UK, 2004; pp. 7–163. [Google Scholar]
- San Francisco. City and County of San Francisco 2030 Sewer System Master Plan. 2009. Available online: https://sfwater.org/modules/showdocument.aspx?documentid=586 (accessed on 23 November 2020).
- WESD and WCSD (Wastewater Engineering Services Division & Wastewater Collection Systems Division). Collection System Odor Control Master Plan 2017. 2017. Available online: https://www.lacitysan.org/cs/groups/sg_cw/documents/document/y250/mdiw/~edisp/cnt020340.pdf (accessed on 23 November 2020).
- Ji, H.W.; Yoo, S.S. The measures to reduce sewer odor in South Korea through sewer odor reduction system in Los Angeles and San Francisco. J. Korean Soc. Water Wastewater 2018, 32, 445–451. [Google Scholar] [CrossRef]
- Pochwat, K.; Kida, M.; Ziembowicz, S.; Koszelnik, P. Odours in sewerage—A description of emissions and of technical abatement measures. Environment 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Beichert, J. Influence of sewer sediments on the overflow load for various combined sewer systems. Water Sci. Tech. 1992, 25, 217–224. [Google Scholar] [CrossRef]
- Ahyerre, M.; Chebbo, G. Identification of in-sewer sources of organic solids contributing to combined sewer overflows. Environ. Tech. 2002, 23, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Schladweiler, J.C. The History of Sanitary Sewer: Pipes-Brick; AZ Water Association; NASSCO; Collection Systems Committee of the Water Environment Federation. 2020. Available online: http://www.sewerhistory.org/photosgraphics/pipes-brick/ (accessed on 24 July 2020).
- Bizier, P. Gravity Sanitary Sewer Design and Construction; American Society of Civil Engineers and Water Environment Federation: Reston, VA, USA, 2007. [Google Scholar]
- Regueiro-Picallo, M.; Naves, J.; Anta, J.; Puertas, J.; Suárez, J. Experimental and numerical analysis of egg-shaped sewer pipes flow performance. Water 2016, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.F.; Gasiorek, J.M.; Swaffield, J.A. Fluid Mechanics, 3rd ed.; Longman: Harlow, UK, 1995; pp. 460–474. [Google Scholar]
- George, E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery; Wiley: New York, NY, USA, 2005; pp. 27–33. [Google Scholar]
- ANSYS CFX. ANSYS CFX-Solver Theory Guide; ANSYS CFX Release: Canonsburg, PA, USA, 2012; pp. 69–118. [Google Scholar]
- Haestad, M.; Walski, T.M.; Barnard, T.E.; Harold, E.; Merritt, L.B.; Walker, N.; Whitman, B.E. Wastewater Collection System Modeling and Design; Haestad Press: Waterbury, CT, USA, 2004. [Google Scholar]
- Chaudhry, M.H. Open-Channel Flow, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2008; pp. 9–11. [Google Scholar]
- Hwang, T.-J.; Cho, J.-Y.; Lee, K.-H. Gradation curve of aggregate using digital image process. J. Korean Soc. Hazard Mitig. 2010, 10, 31–37. [Google Scholar]
- Guo, J. Empirical model for Shields diagram and its applications. J. Hydraul. Eng. 2020, 146, 04020038. [Google Scholar] [CrossRef]
- Ackers, J.C.; Butler, D.; May, R.W.P. Design of Sewers to Control Sediment Problems; Construction Industry Research and Information Association: London, UK, 1996. [Google Scholar]
- Julien, P.Y. Erosion and Sedimentation; Cambridge University Press: Cambridge, UK, 1998; pp. 161–166. [Google Scholar]
- Mayerle, R.; Nalluri, C.; Novak, P. Sediment transport in rigid bed conveyances. J. Hydraul. Res. 1991, 29, 475–495. [Google Scholar] [CrossRef]
Common Condition | Area = 1808 mm2 Manning’s roughness coefficient = 0.01 Slope = 0.01 | ||
Shape | Cup | Semicircle | Triangle |
Specification | D = 45 mm | D = 67.9 mm | θ = 63.4° b = 60.1 mm h = 60.1 mm |
Maximum Discharge Capacity | Q = 1.13 L/s V = 0.625 m/s | Q = 1.2 L/s V = 0.661 m/s | Q = 1.23 L/s V = 0.678 m/s |
Shape | Circular | Complex cross-section module |
Common Condition | Slope: 0.005/0.01/0.015 Discharge: 0.001668 m3/s | |
Size | D450 mm | Main pipe D450 mm Module D150 mm |
Discretization Scheme | Finite volume method | |
Mesh Size | Height of the mesh elements: Maximum 3 mm in the inside of pipe/1 mm close to the pipe wall | |
Mesh Quality | Maximum skewness: 0.58/Minimum orthogonal quality: 0.44 |
Analysis Method | Shape | Average Velocity (m/s)/Water Level (mm) | ||
---|---|---|---|---|
Slope 0.005 | Slope 0.01 | Slope 0.015 | ||
CFD | Circle | 0.493/24.5 | 0.638/20 | 0.739/19 |
Complex | 0.569/33.5 | 0.742/28 | 0.868/26.5 | |
Manning’s equation | Circle | 0.462/25.7 | 0.586/21.8 | 0.677/19.9 |
Complex | 0.533/35 | 0.682/29.5 | 0.787/26.7 |
Test Case | Q (L/s) | Uav (m/s) | Rh (m) | Re | |
---|---|---|---|---|---|
Circular pipe | 0.423 | 0.371 | 0.0089 | 3285 | 0.65 |
Complex cross-section module | 0.412 | 0.436 | 0.0113 | 4902 | 0.829 |
Test Case | Ds | ||
---|---|---|---|
Circular pipe | 28–31 | 0.034–0.038 | 1.1–1.2 |
Complex cross-section module | 40–43 | 0.035–0.038 | 1.4–1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.W.; Yoo, S.S.; Koo, D.D.; Kang, J.-H. Analysis of the Flow Performance of the Complex Cross-Section Module to Reduce the Sedimentation in a Combined Sewer Pipe. Water 2020, 12, 3291. https://doi.org/10.3390/w12113291
Ji HW, Yoo SS, Koo DD, Kang J-H. Analysis of the Flow Performance of the Complex Cross-Section Module to Reduce the Sedimentation in a Combined Sewer Pipe. Water. 2020; 12(11):3291. https://doi.org/10.3390/w12113291
Chicago/Turabian StyleJi, Hyon Wook, Sung Soo Yoo, Dan Daehyun Koo, and Jeong-Hee Kang. 2020. "Analysis of the Flow Performance of the Complex Cross-Section Module to Reduce the Sedimentation in a Combined Sewer Pipe" Water 12, no. 11: 3291. https://doi.org/10.3390/w12113291
APA StyleJi, H. W., Yoo, S. S., Koo, D. D., & Kang, J. -H. (2020). Analysis of the Flow Performance of the Complex Cross-Section Module to Reduce the Sedimentation in a Combined Sewer Pipe. Water, 12(11), 3291. https://doi.org/10.3390/w12113291