Geometry-Based Assessment of Levee Stability and Overtopping Using Airborne LiDAR Altimetry: A Case Study in the Pearl River Delta, Southern China
Abstract
:1. Introduction
2. Study Levees and Data Processing
2.1. Study Levees
2.2. Data Collection and Processing
2.3. Extraction of Levees Geometric Parameters
2.4. Elevation Extraction in the Dock Area
3. Methods of Levee Assessment
3.1. Levee Design Criteria
3.2. Calculation of Extreme Water Levels
3.3. Assessment of Levee Stability and Overtopping Threats
4. Results
4.1. Validation of Geometric Parameters
4.2. Levee Stability Assessment
4.3. Levee Overtopping Assessment
5. Discussions
6. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, X.N.; Wang, X.; Zhai, J.; Li, X.; Huang, H.; Li, C.; Zheng, J.; Sun, H. Improvement to flooding risk assessment of storm surges by residual interpolation in the coastal areas of Guangdong Province, China. Quat. Int. 2017, 453, 1–14. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Dettinger, M.D. Climate and floods still govern California levee breaks. Geophys. Res. Lett. 2007, 34, 22403. [Google Scholar] [CrossRef] [Green Version]
- Gallegos, H.A.; Schubert, J.E.; Sanders, B.F. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Adv. Water Resour. 2009, 32, 1323–1335. [Google Scholar] [CrossRef]
- Hanson, S.; Nicholls, R.; Ranger, N.; Hallegatte, S.; Corfee-Morlot, J.; Herweijer, C.; Chateau, J. A global ranking of port cities with high exposure to climate extremes. Climatic Change 2011, 104, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Burton, C.; Cutter, S.L. Levee Failures and Social Vulnerability in the Sacramento-San Joaquin Delta Area, California. Nat. Hazards Rev. 2008, 9, 136–149. [Google Scholar] [CrossRef]
- Tobin, G.A. The levee love affair: A stormy relationship? Water Resour. Bull. 1995, 31, 359–367. [Google Scholar] [CrossRef]
- Casas, A.; Riano, D.; Greenberg, J.; Ustin, S. Assessing levee stability with geometric parameters derived from airborne LiDAR. Remote. Sens. Environ. 2012, 117, 281–288. [Google Scholar] [CrossRef]
- National Research Council (NRC). Levee policy for the National Flood Insurance Program; National Academy Press: Washington, DC, USA, 1982. [Google Scholar]
- Choung, Y. Mapping risk of levee overtopping using LiDAR data: A case study in Nakdong River Basins, South Korea. KSCE J. Civ. Eng. 2015, 19, 385–391. [Google Scholar] [CrossRef]
- Hossain, A.K.M.A.; Easson, G.; Hasan, K. Detection of Levee Slides Using Commercially Available Remotely Sensed Data. Environ. Eng. Geosci. 2006, 12, 235–246. [Google Scholar] [CrossRef]
- Neuner, J.A. Detection of surficial failures in high plasticity, compacted clay slopes using remote sensing along the Mississippi River Levee. Master’s Thesis, University of Mississippi, Oxford, MS, USA, 2002; 131p. [Google Scholar]
- Kuszmaul, J.; Neuner, J.; Hossain, A.; Easson, G. The use of multispectral imagery to detect variations in soil moisture associated shallow soil slumps. EOS Trans. AGU 2004, 85(17). [Google Scholar]
- Hossain, A.K.A.; Easson, G. Predicting shallow surficial failures in the Mississippi River levee system using airborne hyperspectral imagery. Geomatics, Nat. Hazards Risk 2012, 3, 55–78. [Google Scholar] [CrossRef]
- Bishop, M.J.; McGill, T.E.; Taylor, S.R. Processing of laser radar data for the extraction of an along-the-levee-crown elevation profile for levee remediation studies. Defense and Security 2004, 5412, 354–359. [Google Scholar]
- Choung, Y. Mapping Levees Using LiDAR Data and Multispectral Orthoimages in the Nakdong River Basins, South Korea. Remote. Sens. 2014, 6, 8696–8717. [Google Scholar] [CrossRef] [Green Version]
- Palaseanu-Lovejoy, M.; Thatcher, C.A.; Barras, J.A. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana. ISPRS J. Photogramm. Remote. Sens. 2014, 91, 114–126. [Google Scholar] [CrossRef]
- United States Army Corps of Engineers (USACE). Geotechnical levee practice standards operating procedures (SOP) Sacramento District; United States Army Corps of Engineers (USACE): Folsom, CA, USA, 2008. [Google Scholar]
- Jiantong Co. Technical Report on Airborne Light Detection And Ranging (LiDAR) project of Zhongshan Hengmen Waterway; Internal Document: Guangzhou, Guangdong, China, 2016. [Google Scholar]
- Srinivasan, R.; Engel, B.A. Effect of Slope Prediction Methods on Slope and Erosion Estimates. Appl. Eng. Agric. 1991, 7, 779–783. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998; 190p. [Google Scholar]
- Choung, Y. Accuracy assessment of the levee lines generated using lidar data acquired in the Nakdong River basins, South Korea. Remote. Sens. Lett. 2014, 5, 853–861. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China, Code for design of levee (GB 50286-2013); China Planning Press: Beijing, China, 2013.
- Skare, Ø.; Møller, J.; Jensen, E.B.V. Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks. Stat. Comput. 2007, 17, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Shen, D. Study on flood risk assessment technology and method of Dongting Lake flood storage and detention basin based on airborne LiDAR data. Doctoral Dissertation, NanJing University, Nanjing, China, 2017. [Google Scholar]
- Hemert, H.V.; Igigabel, M.; Pohl, R.; Sharp, M.; Simm, J.; Tourment, R.; Wallis, M. The International Levee Handbook. 2013, published by CIRIA, Griffin Court, 15 Long Lane, London, EC1A 9PN, UK. Available online: https://www.ciria.org/ciria/Resources/Free_publications/I_L_H/ILH_resources.aspx (accessed on 8 January 2020).
- D’Onofrio, E.E.; Fiore, M.M.; Romero, S.I. Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires. Cont. Shelf Res. 1999, 19, 1681–1693. [Google Scholar] [CrossRef]
- Li, K.; Li, G.S. Vulnerability assessment of storm surges in the coastal area of Guangdong Province. Nat. Hazard. 2013, 68, 1129–1139. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería-Portugués, S. Estimating extreme dry-spell risk in the middle Ebro valley (northeastern Spain): a comparative analysis of partial duration series with a general Pareto distribution and annual maxima series with a Gumbel distribution. Int. J. Clim. 2003, 23, 1103–1118. [Google Scholar] [CrossRef]
- China Oceanic Information Network (COIN). China Sea Level Bulletin 2017. Available online: http://www.nmdis.org.cn/hygb/zghpmgb/2017nzghpmgb/ (accessed on 10 September 2018).
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Nie, Y.; Tang, C.; Cheng, Z. Projections of Maximum Sea Level Recurrence Interval near Shenzhen at the End of the 21th Century. Trop. Geogr. 2016, 36, 901–905. [Google Scholar]
Levee Section | Engineering Grade | Crown Elevation (m) | Crown Width (m) | Waterside Slope (°) | Landside Slope (°) |
---|---|---|---|---|---|
A | Ⅲ | ≥4.5 | ≥6 | ≤1:2 | ≤1:2 (26.6°) |
B | Ⅱ | ≥4.5 | ≥6 | ≤1:2 | ≤1:2 |
C | Ⅲ | ≥4.5 | ≥4 | ≤1:2 | ≤1:2 |
D | Ⅲ | ≥4.5 | ≥4 | ≤1:2 | ≤1:2 |
Assessment Score | Crown Height (m) | Return Period (Year) | Water Level (m) | Crown Width (m) | Landside Slope (°) A,B,C,D | |
---|---|---|---|---|---|---|
A,B | C,D | |||||
0 | <3.5 | 20 | 3.54 | <3 | <3 | >33.7 (1:1.5) |
1 | 3.5–3.9 | 50 | 3.91 | 3–6 | 3–4 | 26.6–33.7 |
2 | 3.9–4.2 | 100 | 4.19 | ≥6 | ≥4 | ≤26.6 (1:2.0) |
3 | 4.2–4.5 | 200 | 4.47 | |||
4 | ≥4.5 |
Levee Sections | A | B | C | D | E | |
---|---|---|---|---|---|---|
Count | levee transect lines | 125 | 35 | 47 | 110 | 266 |
Crown elevation | Mean (m) | 4.70 | 4.75 | 3.98 | 4.34 | 4.00 |
Standard deviation | 0.46 | 0.81 | 0.71 | 0.51 | 0.55 | |
Qualified rate | 90% | 89% | 9% | 27% | 26% | |
Assessment score | 96% | 97% | 48% | 72% | 48% | |
AS after 0.5m SLR | 65% | 70% | 18% | 35% | 24% | |
Crown width | Mean (m) | 5.38 | 6.90 | 4.52 | 4.49 | - |
Standard deviation | 0.78 | 1.19 | 0.98 | 0.65 | - | |
Qualified rate | 7% | 100% | 77% | 89% | - | |
Assessment score | 53% | 100% | 88% | 94% | - | |
Slope landside | Mean (°) | 18.9 | 15.2 | 7.8 | 7.1 | - |
Standard deviation | 7.4 | 6 | 6.7 | 7 | - | |
Qualified rate | 90% | 100% | 98% | 97% | - | |
Assessment score | 94% | 100% | 98% | 98% | - | |
All | Assessment score | 85% | 99% | 71% | 84% | 48% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, L.; Zhang, T. Geometry-Based Assessment of Levee Stability and Overtopping Using Airborne LiDAR Altimetry: A Case Study in the Pearl River Delta, Southern China. Water 2020, 12, 403. https://doi.org/10.3390/w12020403
Wang X, Wang L, Zhang T. Geometry-Based Assessment of Levee Stability and Overtopping Using Airborne LiDAR Altimetry: A Case Study in the Pearl River Delta, Southern China. Water. 2020; 12(2):403. https://doi.org/10.3390/w12020403
Chicago/Turabian StyleWang, Xianwei, Lingzhi Wang, and Tianqiao Zhang. 2020. "Geometry-Based Assessment of Levee Stability and Overtopping Using Airborne LiDAR Altimetry: A Case Study in the Pearl River Delta, Southern China" Water 12, no. 2: 403. https://doi.org/10.3390/w12020403
APA StyleWang, X., Wang, L., & Zhang, T. (2020). Geometry-Based Assessment of Levee Stability and Overtopping Using Airborne LiDAR Altimetry: A Case Study in the Pearl River Delta, Southern China. Water, 12(2), 403. https://doi.org/10.3390/w12020403