Drought Risk Assessment in Central Asia Using a Probabilistic Copula Function Approach
Abstract
:1. Introduction
2. Materials and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Calculation of SPEI and Drought Classification
3.2. The Identification of Drought Variables
- (i)
- Dd represents the duration of a drought event: the count of continuous months at which the value of SPEI is below the threshold X0.
- (ii)
- Ds represents the intensity of a drought event: the absolute sum of all SPEIs during the drought period.
- (iii)
- Dp represents the peak value of a drought event: the minimum value of SPEI during the drought period.
- (iv)
- Using the above definitions, drought identification is carried out by calculating the SPEI value in the 3-month scale. The threshold is set to be −1, and drought events with drought duration less than 2 months are eliminated.
3.3. Drought Risk Probability Model
3.4. The Theory of Copula
- (1)
- Parameter Estimation
- (2)
- Verification and Evaluation
3.5. Correlation Analysis and Establishment of Marginal Distribution Function
3.6. Joint Probability Distribution and Drought Risk Assessment
3.7. The Return Period of Drought Event
4. Results
4.1. Changing Trend of the SPEI
4.2. The Characteristics of Drought Variables
4.3. Correlation Analysis
4.4. Selection of the Suitable Marginal Distribution
4.5. Selection of the Suitable Copula
4.6. Drought Risk Probability Assessment
- (1)
- 2D Joint Distribution Functions
- (2)
- 3D Joint Distribution Functions
4.7. Drought Event Return Period
5. Discussion
5.1. The Application of Copula Function
5.2. The SPEI and Run Theory
5.3. The Comparison between our Findings and Previous Studies
6. Conclusions
- (1)
- By calculating the 1, 3, 6, 9, and 12-month scale of SPEI, it is found that climatic conditions were relatively stable during 1961–1974 and 1979–1995, while they varied more from 1974 to 1979 and from 1995 to 2017, during which the five CA countries experienced recurrent drought. With the increase of the time scale, the frequency and severity of drought events began to decrease, but the drought duration gradually became prolonged.
- (2)
- The severity of drought in CA is greater in the west than in the east, and the duration of drought is spatially contrasted with the severity of drought. In areas with high (low) drought severity, the drought duration is also high (low). The drought events in CA are mainly severe; moderate droughts are less common, and extreme droughts mainly occurred in central Kazakhstan.
- (3)
- For drought risk analysis based on multi-dimensional joint probability of drought variables, the drought risk in the three-dimensional joint distribution is similar with the analyses using the two-dimensional joint distribution. The five CA countries have gone from moderate drought risk to slight drought risk and then to severe drought risk from 1961 to 2017. Furthermore, the return period of drought events, defined by three-dimensional Ds, Dd, and Dp, was calculated at about 80% probability in 2 years, 15% of 2–10 years, and 5% for more than 10 years.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qi, J.; Bobushev, T.S.; Kulmatov, R.; Groisman, P.; Gutman, G. Addressing global change challenges for Central Asian socio-ecosystems. Front. Earth Sci. 2012, 6, 115–121. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 390–402. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; De Maeyer, P. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Yevjevich, V.M. Structural Analysis of Hydrologic Time Series. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, November 1972. Available online: https://mountainscholar.org/bitstream/handle/10217/61539/HydrologyPapers_n56.pdf?sequence=1 (accessed on 1 September 2019).
- Salas, J.D. Analysis and modeling of hydrologic time series. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; Chapter 19. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Kim, S.; Kim, B.; Ahn, T.J.; Kim, H.S. Spatio-temporal characterization of Korean drought using severity–area–duration curve analysis. Water Environ. J. 2011, 25, 22–30. [Google Scholar] [CrossRef]
- Valdés, G.; González, S.V.; García, D.L.; Márquez, P. Language ideology: The case of Spanish in departments of foreign languages. Anthropol. Educ. Quart. 2003, 34, 3–26. [Google Scholar] [CrossRef]
- Ma, M.W.; Ren, L.L.; Song, S.B.; Song, J.L.; Jiang, S.H. Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data. Water Sci. Eng. 2013, 6, 18–30. [Google Scholar] [CrossRef]
- Huang, S.; Hou, B.; Chang, J.; Huang, Q.; Chen, Y. Copulas-based probabilistic characterization of the combination of dry and wet conditions in the Guanzhong Plain, China. J. Hydrol. 2014, 519, 3204–3213. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China. Water Resour. Manag. 2014, 28, 3095–3110. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, M.; Singh, V.P. Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China. Glob. Planet. Chang. 2015, 129, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V. Bivariate flood frequency analysis using the copula method. J. Hydrol. Eng. 2007, 11, 150–164. [Google Scholar] [CrossRef]
- Bazrafshan, J.; Nadi, M.; Ghorbani, K. Comparison of empirical copula-based joint deficit index (JDI) and multivariate standardized precipitation index (MSPI) for drought monitoring in Iran. Water Resour. Manag. 2015, 29, 2027–2044. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. J. Hydrol. 2015, 526, 101–115. [Google Scholar] [CrossRef]
- Ning, L.K. Research on Assessment of Vulnerability of and Risk to Water Resources in the Arid and Semi-Arid Regions of Northwest China Under Climate Change—A Case Study of the Tarim River Basin; The University of Chinese Academy of Sciences: Beijing, China, 2016. [Google Scholar]
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- Burroughs, W. Climate: Into the 21st Century; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Thavorntam, W.; Tantemsapya, N.; Armstrong, L. A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand. Nat. Hazards 2015, 77, 1453–1474. [Google Scholar] [CrossRef]
- Deng, H.J.; Chen, Y.N. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2017, 544, 46–57. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.N.; Wang, Y.; Fang, G.H. Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrol. Earth Syst. Sci. 2016, 20, 2169–2178. [Google Scholar] [CrossRef] [Green Version]
- Asadi Zarch, M.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Awange, J.L.; Mpelasoka, F.; Goncalves, R.M. When every drop counts: Analysis of droughts in Brazil for the 1901–2013 period. Sci. Total Environ. 2016, 566–567, 1472–1488. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Srivastava, P. Spatiotemporal variability of meteorological droughts in southeastern USA. Nat. Hazards 2017, 86, 1007–1038. [Google Scholar] [CrossRef]
- Steinkamp, J.; Hickler, T.; Gibson, D. Is drought-induced forest dieback globally increasing? J. Ecol. 2015, 103, 31–43. [Google Scholar] [CrossRef]
- Wang, Z.L.; Li, J.; Lai, C.G.; Zeng, Z.Y.; Zhong, R.D.; Chen, X.H.; Zhou, X.W.; Wang, M.Y. Does drought in China show a significant decreasing trend from 1961 to 2009? Sci. Total Environ. 2017, 579, 314–324. [Google Scholar] [CrossRef]
- Jones, P.D.; Harpham, C.; Harris, L.; Goodess, C.M.; Burton, A.; Centella-Artola, A.; Taylor, M.A.; Bezanilla-Morlot, A.; Campbell, J.D.; Stephenson, T.S.; et al. Long-term trends in precipitation and temperature across the Caribbean. Int. J. Climatol. 2016, 36, 3314–3333. [Google Scholar] [CrossRef] [Green Version]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Potop, V.; Možný, M.; Soukup, J. Drought evolution at various time scales in the lowland regions and their impact on vegetable crops in the Czech Republic. Agric. For. Meteorol. 2012, 156, 121–133. [Google Scholar] [CrossRef]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Chang. Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef]
- Fuchs, B.; Svoboda, M.; Nothwehr, J.; Poulsen, C.; Sorensen, W.; Guttman, N. A New National Drought Risk Atlas for the US from the National Drought Mitigation Center; National Drought Mitigation Center, University of Nebraska: Lincoln, NE, USA, 2012. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, Available online: http://www.fao.org/3/X0490E/x0490e00.htm (accessed on 1 September 2019).
- Gao, X.R.; Zhao, Q.; Zhao, X.N.; Wu, P.; Pan, W.; Gao, X.; Sun, M. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; American Society of Civil Engineers: New York, NY, USA, 1990. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Salvadori, G.; De Michele, C. On the use of copulas in hydrology: Theory and practice. J. Hydrol. Eng. 2007, 12, 369–380. [Google Scholar] [CrossRef]
- Renard, B.; Lang, M. Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Adv. Water Resour. 2007, 30, 897–912. [Google Scholar] [CrossRef] [Green Version]
- Meintanis, S.G.; Ngatchou-Wandji, J.; Taufer, E. Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function. J. Multivar. Anal. 2015, 140, 171–192. [Google Scholar] [CrossRef]
- Poulin, A.; Huard, D.; Favre, A.C.; Pugin, S. Importance of tail dependence in bivariate frequency analysis. J. Hydrol. Eng. 2007, 12, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Genest, C.; Rivest, L.P. Statistical inference procedures for bivariate Archimedean copulas. Publ. Am. Stat. Assoc. 1993, 88, 1034–1043. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2007, 332, 93–109. [Google Scholar] [CrossRef]
- Sadegh, M.; Ragno, E.; AghaKouchak, A. Multivariate C opula A nalysis T oolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 2017, 53, 5166–5183. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Francesco, V.D.; Zullo, A.; Perna, F.; Giorgio, F.; Hassan, C.; Ricci, C.; Zotti, M.; Stoppino, G.; Antonino, M.; Morini, S.; et al. Helicobacter pylori clarithromycin resistance assessment by culture and taqman real-time pcr: A comparative study. Dig. Liver Dis. 2009, 41, S85. [Google Scholar] [CrossRef]
- Sadegh, M.; Moftakhari, H.; Gupta, H.V.; Ragno, E.; Mazdiyasni, O.; Sanders, B.; Matthew, R.; AghaKouchak, A. Multihazard scenarios for analysis of compound extreme events. Geophys. Res. Lett. 2018, 45, 5470–5480. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Zhang, J.; Bao, Y.; Guo, E. Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China. Sustainability 2019, 11, 6032. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Shi, K.; Zhang, H.; Xin, Z.; Hu, J.; Zhang, C. Spatio-Temporal Analysis of Drought Indicated by SPEI over Northeastern China. Water 2019, 11, 908. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.W.; Kim, Y.S.; Lee, J.S.; Kim, H.S. Analysis of drought characteristics using copula theory. In World Environmental and Water Resources Congress 2012: Crossing Boundaries; American Society of Civil Engineers: New York, NY, USA, 2012; pp. 1762–1771. [Google Scholar] [CrossRef]
- Panu, U.S.; Sharma, T.C. Challenges in drought research: Some perspectives and future directions. Hydrol. Sci. J. 2002, 47, S19–S30. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Lee, S.H.; Yoo, S.H.; Kim, T. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010. Water 2018, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Michael, D.N. With both feet planted firmly in mid-air: Reflections on thinking about the future. Futures 1985, 17, 94–103. [Google Scholar] [CrossRef]
- Rumer, B.Z. Central Asia: A Gathering Storm? M.E. Sharpe: Armonk, NY, USA, 2002; p. 442. [Google Scholar]
- Colwell, R.K.; Lees, D.C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 2000, 15, 70–76. [Google Scholar] [CrossRef]
- Ayantobo, O.O.; Li, Y.; Song, S.; Yao, N. Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013. J. Hydrol. 2017, 550, 549–567. [Google Scholar] [CrossRef]
Level | SPEI | Category |
---|---|---|
0 | −0.5 to 0.5 | Near Normal |
1 | −0.99 to −0.5 | Slight Drought |
2 | −1.0 to −1.49 | Moderate Drought |
3 | −1.5 to −1.99 | Severe Drought |
4 | <−2.0 | Extreme Drought |
Copula | Equation |
---|---|
Gumbel Copula | , |
Clayton Copula | |
Frank Copula |
Country | Variable | Kendall | Spearman | Pearson |
---|---|---|---|---|
KAZ | Ds_Dd | 0.8446 | 0.9461 | 0.9635 |
Ds_Dp | 0.7073 | 0.8685 | 0.7714 | |
Dd_Dp | 0.5799 | 0.7292 | 0.6244 | |
KGZ | Ds_Dd | 0.8476 | 0.952 | 0.9321 |
Ds_Dp | 0.6144 | 0.7971 | 0.7821 | |
Dd_Dp | 0.4881 | 0.6343 | 0.6104 | |
TJK | Ds_Dd | 0.7797 | 0.8949 | 0.9177 |
Ds_Dp | 0.6684 | 0.852 | 0.7398 | |
Dd_Dp | 0.4774 | 0.6195 | 0.5345 | |
TKM | Ds_Dd | 0.8214 | 0.9348 | 0.9463 |
Ds_Dp | 0.7515 | 0.9092 | 0.8637 | |
Dd_Dp | 0.6009 | 0.7465 | 0.7396 | |
UZB | Ds_Dd | 0.8307 | 0.9428 | 0.9392 |
Ds_Dp | 0.6589 | 0.8411 | 0.8223 | |
Dd_Dp | 0.5081 | 0.6691 | 0.663 |
Country | Variable | Function | Parameter | Value |
---|---|---|---|---|
KAZ | Ds | Generalized Pareto | k | −0.0224 |
sigma | 2.4403 | |||
theta | 1.0840 | |||
Dd | Generalized Extreme Value | k | 3.9801 | |
sigma | 0.0447 | |||
mu | 2.0112 | |||
Dp | Generalized Pareto | k | −0.6429 | |
sigma | 0.9199 | |||
theta | 0.5469 | |||
KGZ | Ds | Generalized Pareto | k | −0.5616 |
sigma | 5.9238 | |||
theta | 1.0529 | |||
Dd | Generalized Pareto | k | −0.3638 | |
sigma | 3.0777 | |||
theta | 2.0000 | |||
Dp | Weibull | A | 1.5963 | |
B | 3.7680 | |||
TJK | Ds | Inverse Gaussian | mu | 4.0423 |
lambda | 10.1465 | |||
Dd | Generalized Pareto | k | −0.0343 | |
sigma | 1.8532 | |||
theta | 2.0000 | |||
Dp | Weibull | A | 1.4730 | |
B | 3.4742 | |||
TKM | Ds | Generalized Pareto | k | −0.3614 |
sigma | 4.6482 | |||
theta | 1.1508 | |||
Dd | Generalized Pareto | k | −0.3613 | |
sigma | 3.0205 | |||
theta | 2.0000 | |||
Dp | Generalized Pareto | k | −1.0268 | |
sigma | 1.5666 | |||
theta | 0.5915 | |||
UZB | Ds | Generalized Pareto | k | −0.5339 |
sigma | 4.9857 | |||
theta | 1.3198 | |||
Dd | Generalized Pareto | k | −1.0902 | |
sigma | 5.4511 | |||
theta | 2.0000 | |||
Dp | Generalized Pareto | k | −1.1119 | |
sigma | 1.3984 | |||
theta | 0.7025 |
Country | Variable | Copula | RMSE | NSE | AIC |
---|---|---|---|---|---|
KAZ | Ds_Dd | Clayton | 0.9298 | 0.7366 | −156.2280 |
Frank | 0.7457 | 0.8306 | −174.3191 | ||
Gumbel | 0.7351 | 0.8354 | −175.4919 | ||
Ds_Dp | Clayton | 0.2717 | 0.9741 | −257.0927 | |
Frank | 0.2663 | 0.9751 | −258.7414 | ||
Gumbel | 0.2743 | 0.9736 | −256.3116 | ||
Dd_Dp | Clayton | 0.7951 | 0.7665 | −169.0555 | |
Frank | 0.7236 | 0.8066 | −176.7816 | ||
Gumbel | 0.7117 | 0.8129 | −178.1461 | ||
KGZ | Ds_Dd | Clayton | 1.2267 | 0.5461 | −137.8186 |
Frank | 0.5826 | 0.8976 | −200.3612 | ||
Gumbel | 0.8258 | 0.7943 | −171.0600 | ||
Ds_Dp | Clayton | 0.7382 | 0.8227 | −180.4771 | |
Frank | 0.2641 | 0.9773 | −266.8354 | ||
Gumbel | 0.3603 | 0.9578 | −240.7421 | ||
Dd_Dp | Clayton | 0.8359 | 0.7642 | −170.0342 | |
Frank | 0.5547 | 0.8962 | −204.4800 | ||
Gumbel | 0.6748 | 0.8464 | −188.0256 | ||
TJK | Ds_Dd | Clayton | 1.1952 | 0.6482 | −166.6986 |
Frank | 0.5054 | 0.9371 | −249.3316 | ||
Gumbel | 0.7851 | 0.8482 | −207.0471 | ||
Ds_Dp | Clayton | 0.2545 | 0.9811 | −315.2014 | |
Frank | 0.2214 | 0.9857 | −328.5633 | ||
Gumbel | 0.2754 | 0.9778 | −307.6053 | ||
Dd_Dp | Clayton | 0.8561 | 0.7886 | −198.7347 | |
Frank | 0.5341 | 0.9177 | −244.0251 | ||
Gumbel | 0.6778 | 0.8675 | −221.1546 | ||
TKM | Ds_Dd | Clayton | 1.1895 | 0.5898 | −153.6809 |
Frank | 0.5849 | 0.9008 | −217.5698 | ||
Gumbel | 0.7816 | 0.8229 | −191.4803 | ||
Ds_Dp | Clayton | 0.4255 | 0.9499 | −246.2095 | |
Frank | 0.2889 | 0.9769 | −281.0619 | ||
Gumbel | 0.5783 | 0.9074 | −218.5873 | ||
Dd_Dp | Clayton | 0.9722 | 0.7158 | −171.8403 | |
Frank | 0.6091 | 0.8884 | −213.9126 | ||
Gumbel | 0.8070 | 0.8042 | −188.6022 | ||
UZB | Ds_Dd | Clayton | 1.5078 | 0.3384 | −124.4172 |
Frank | 0.9986 | 0.7098 | −159.8492 | ||
Gumbel | 1.4814 | 0.3613 | −125.9320 | ||
Ds_Dp | Clayton | 0.3246 | 0.9664 | −256.5018 | |
Frank | 0.2912 | 0.9729 | −265.8340 | ||
Gumbel | 0.4650 | 0.9310 | −225.5920 | ||
Dd_Dp | Clayton | 1.1280 | 0.5810 | −149.3705 | |
Frank | 0.9410 | 0.7084 | −164.9586 | ||
Gumbel | 1.1206 | 0.5865 | −149.9416 |
Parameter | Gumble | Frank | Clayton |
---|---|---|---|
KAZ | 4.078 | 14.38 | 6.155 |
KGZ | 3.702 | 12.78 | 5.404 |
TJK | 3.156 | 10.59 | 4.312 |
TKM | 4.043 | 14.27 | 6.085 |
UZB | 3.624 | 12.49 | 5.248 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, Y.; Chen, Y.; Bai, Y.; Zhang, Q. Drought Risk Assessment in Central Asia Using a Probabilistic Copula Function Approach. Water 2020, 12, 421. https://doi.org/10.3390/w12020421
Zhang L, Wang Y, Chen Y, Bai Y, Zhang Q. Drought Risk Assessment in Central Asia Using a Probabilistic Copula Function Approach. Water. 2020; 12(2):421. https://doi.org/10.3390/w12020421
Chicago/Turabian StyleZhang, Leyuan, Yi Wang, Yaning Chen, Yifei Bai, and Qifei Zhang. 2020. "Drought Risk Assessment in Central Asia Using a Probabilistic Copula Function Approach" Water 12, no. 2: 421. https://doi.org/10.3390/w12020421
APA StyleZhang, L., Wang, Y., Chen, Y., Bai, Y., & Zhang, Q. (2020). Drought Risk Assessment in Central Asia Using a Probabilistic Copula Function Approach. Water, 12(2), 421. https://doi.org/10.3390/w12020421