Role of Nanomaterials in the Treatment of Wastewater: A Review
Abstract
:1. Introduction
2. Water Treatment Methodologies
2.1. Nanophotocatalysts
2.1.1. Advantage and Disadvantages of Nanophotocatalyst
2.1.2. Future Perspectives of Nanophotocatalyst
2.1.3. Photocatalytic Degradation and Mineralization Pathway
2.2. Nano- and Micromotors
2.2.1. Advantage and Disadvantages of Nano- and Micromotors
2.2.2. Future Perspectives of Nano- and Micromotors
2.3. Nanomembranes
2.3.1. Advantage and Disadvantages of Nanomembrane
2.3.2. Future Perspectives of Nanomembranes
2.4. Nanosorbents
Advantages, Disadvantages and Future Perspectives of Nanosorbents
3. Self-Toxicity of Nanomaterials
4. Applications of Nanomaterials
- (1).
- Nanomaterials are very efficient in removing arsenic from drinking water when titanium nanoparticles and exchange based resin material impregnated with iron hydroxide material. The researcher also studied that titanium served as an adsorbent to remove arsenic from water present in packed bed reactor setting. In some developed countries, iron oxide is used as coated sand to remove arsenic from drinking water [186].
- (2).
- Different nanomaterial like magnetic and carbon nanotubes can be served as sensor components due to having remarkable physical, electrical and chemical properties. Therefore, these sensors may offer opportunity to monitor water quality. Nanomaterial-based sensor is used to detect different pollutants because there have optical properties that make sensor more selective and sensitive to detect the pollutants [187].
- (3).
- Recently, WHO reported that almost 783 million populations are suffering from fresh drinking water. Boschi-Pinto et al. stated that children deaths ratio of nearly 1.87 million is only due to water diseases [188]. Few conventional techniques are not suitable in underdeveloped countries because high investment is required for this project for maintenance expenses, and many other problems. Furthermore, generally people carry their water from another area and then save it for many days because there is no proper supply of drinking water. During collection and transport of water, there are chances of water contaminations. An efficient method of ceramic water filters (CWFs) provides an offer to treat these kinds of water infections (pathogens). Recently, CWFs are equipped by firing and pressing of flammable material and clay with silver nanoparticles [189]. The filter is produced by pressure and then dried air fired in a kiln. Therefore, a ceramic material produces filtered or clean water but by using this process removal is not possible up to high level. Silver doped nanomaterials could be used to get a higher percentage of pathogen’s removal from water due to having antimicrobial properties. Ag solutions are used by brushing on CWF. It was observed that 80% of CWFs industries used Ag nanoparticles doped with some other materials. The Ag nanoparticles give remarkable results in order to remove different pathogens from drinking waters [190].
- (4).
- Water pollutants are responsible for environmental pollutions. The polymer-based nanomaterial helps in environmental protection. Reported studies show that the purification of water using polymer material could be attained by nanoclay incorporation. The hydrophobicity enhancement helps to promote nanocomposite properties. Applications in contact with moist environments clearly indicate benefits from nanomaterial incorporation of nanoclay particles [191].
- (5).
- The research is on the way to produce nanosorbents for different metals and organic compounds. Nanomaterial can act as sorbents like carbon nanotubes, zeolites and self-assembly layers on mesoporous supports, which control mesoporous ceramics with a sorbent that indicate efficient removal process of metals and anions from drinking water [192].
- (6).
- Some nanomaterial has high antimicrobial activity properties. This type of material includes AgNPs, fullerene, TiO2, CNT based nanocomposite, etc. and they contain several properties like mild oxidant, inertness to water and produce safe by-products [193].
- (7).
- Now a days, many pollutants are present in water resources such as organics-based substances and even they present in trace amount which are very dangerous for human health. Usually, the chlorination and flocculation processes are used for removing water pollutants. There are some drawbacks in these conventional filtrations processes. These kinds of systems show less efficiency to remove pollutants entirely and also produces some sludge in water recourses which also creates big issues in environment pollution [194]. Therefore, to keep safe from sludge nanomembranes, it was employed because it does not allow any solid particle to pass into water and reduce the chances of sludge production in water resources. This reason makes nanomembrane more prominent in market than other methods. Certainly, some improvements are required to make it completely perfect technique.
- (8).
- Metal oxides nanoparticles also play a very good role as catalyst in different oxidation reactions. They show strong catalytic reactivity towards pollutant molecules and change these pollutants into environmentally suitable products [195,196]. Some unique properties are present of these nanomaterials like nano size, high reactivity and greater surface area. Specially, TiO2 photocatalysis plays a vital role in removing different impurities from surface water as shown in Figure 6.
5. Nanomaterial Challenges for Water Treatment
6. Conclusive Remarks and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-Enabled water and wastewater treatment. Nano Impact 2016, 3, 22–39. [Google Scholar] [CrossRef]
- Gitis, V.; Hankins, N. Water treatment chemicals: Trends and challenges. J. Water Process Eng. 2018, 25, 34–38. [Google Scholar] [CrossRef]
- Hodges, B.C.; Cates, E.L.; Kim, J. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterial. Nat. Nanotechnol. 2018, 13, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Umar, K.; Haque, M.M.; Mir, N.A.; Muneer, M. Titanium dioxide-Mediated photocatalyzed mineralization of Two Selected organic pollutants in aqueous suspensions. J. Adv. Oxid. Technol. 2013, 16, 252–260. [Google Scholar]
- Umar, K.; Ibrahim, M.N.M.; Ahmad, A.; Rafatullah, M. Synthesis of Mn-Doped TiO2 by novel route and photocatalytic mineralization/intermediate studies of organic pollutants. Res. Chem. Intermediat. 2019, 45, 2927–2945. [Google Scholar] [CrossRef]
- Baruah, S.; Khan, M.N.; Dutta, J. Perspectives and applications of nanotechnology in water treatment. Environ. Chem. Lett. 2016, 14, 1–14. [Google Scholar] [CrossRef]
- Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S.; Fu, D.; Chen, J.; Wang, X. Environmental remediation of heavy metal ions by novel-Nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [Google Scholar] [CrossRef]
- Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S.W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination 2015, 367, 37–48. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M. A Review Article of Nanoparticles; Synthetic Approaches and Wastewater Treatment Methods. Int. Res. J. Eng. Technol. 2019, 6, 1–7. [Google Scholar]
- Tang, W.W.; Zeng, G.M.; Gong, J.L. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468, 1014–1027. [Google Scholar] [CrossRef]
- Mir, N.A.; Haque, M.M.; Khan, A.; Umar, K.; Muneer, M.; Vijayalakshmi, S. Semiconductor mediated photocatalysed reaction of two selected organic compounds in aqueous suspensions of Titanium dioxide. J. Adv. Oxid. Technol. 2012, 15, 380–391. [Google Scholar] [CrossRef]
- Umar, K. Water Contamination by Organic-Pollutants: TiO2 Photocatalysis. In Modern Age Environmental Problem and Remediation; Oves, M., Khan, M.Z., Ismail, I.M.I., Eds.; Springer Nature: Basel, Switzerland, 2018; pp. 95–109. [Google Scholar]
- Kalhapure, R.S.; Sonawane, S.J.; Sikwal, D.R. Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloid Surf. B 2015, 136, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Li, J.; Li, X.; Pan, S.; Zhang, X.; Sun, X.; Han, J.S.W.; Wang, L. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem. Eng. 2017, 314, 38–49. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Ouma, C.N.M.; Du Preez, S.P.; Modisha, P.; Engelbrecht, N.; Bessarabov, D.G.; Ghimire, A. Application of nanoparticles in biofuels: An overview. Fuel 2019, 237, 380–397. [Google Scholar] [CrossRef]
- Briggs, A.M.; Cross, M.J.; Hoy, D.G.; Blyth, F.H.; Woolf, A.D.; March, L. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist 2016, 56, 243–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umar, K.; Parveen, T.; Khan, M.A.; Ibrahim, M.N.M.; Ahmad, A.; Rafatullah, M. Degradation of organic pollutants using metal-Doped TiO2 photocatalysts under visible light: A comparative study. Desal. Water Treat. 2019, 161, 275–282. [Google Scholar] [CrossRef]
- Tang, K.; Gong, C.; Wang, D. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China. Sci. Total Environ. 2016, 541, 42–50. [Google Scholar] [CrossRef]
- Richter, K.E.; Ayers, J.M. An approach to predicting sediment microbial fuel cell performance in shallow and deep water. Appl. Sci. 2018, 8, 2628. [Google Scholar] [CrossRef] [Green Version]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Jiménez, E.M. Review Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Carolina, L.Z.V.; Wolfson, J.M.; Pingtian, G. Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrasonics Sonochem. 2019, 55, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hong, T.; Li, H.; Wang, L. From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China. Energy Policy 2018, 121, 300–313. [Google Scholar] [CrossRef]
- Bayoumi, T.A.; Saleh, H.M. Characterization of biological waste stabilized by cement during immersion in aqueous media to develop disposal strategies for phytomediated radioactive waste. Prog. Nucl. Energy 2018, 107, 83–89. [Google Scholar] [CrossRef]
- Ma, H.; Guo, Y.; Qin, Y.; Li, Y.Y. Review Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion. Bioresour. Technol. 2018, 269, 520–531. [Google Scholar] [CrossRef]
- Longwane, G.H.; Sekoai, P.T.; Meyyappan, M.; Moothi, K. Review Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Sci. Total Environ. 2019, 656, 808–833. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water-A comprehensive review. Resour.-Effic. Technol. 2016, 4, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, R.; Gracia, F.; Stephen, A. Basic principles, mechanism, and challenges of photocatalysis. In Nanocomposites for Visible Light-Induced Photocatalysis; Springer, Cham: Berlin/Heidelberg, Germany, 2017; pp. 19–40. [Google Scholar]
- Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.M.; Martins, R.C. N–TiO2 photocatalysts: A review of their characteristics and capacity for emerging contaminants removal. Water 2019, 11, 373. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liu, Q.; Tian, S.; Zhao, X. Exposed facet dependent stability of ZnO micro/nano crystals as a photocatalyst. App. Surf. Sci 2019, 470, 807–816. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 2017, 310, 407–427. [Google Scholar] [CrossRef]
- Umar, K.; Aris, A.; Parveen, T.; Jaafar, J.; Majid, Z.A.; Reddy, A.V.B.; Talib, J. Synthesis, Characterization of Mo and Mn doped Zno and their photocatalytic activity for the decolorization of two different chromophoric dyes. Appl. Catal A 2015, 505, 507–514. [Google Scholar] [CrossRef]
- Loeb, S.K.; Alvarez, P.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environ. Sci. Technol. 2019, 53, 2937–2947. [Google Scholar] [CrossRef]
- Reddy, A.V.B.; Jaafar, J.; Majid, Z.A.; Aris, A.; Umar, K.; Talib, J.; Madhavi, G. Relative efficiency comparison of carboxymethyl cellulose (cmc) stabilized fe0 and fe0/ag nanoparticles for rapid degradation of chlorpyrifos in aqueous solutions. Dig. J. Nanomater. Bios. 2015, 10, 331–340. [Google Scholar]
- Samanta, H.S.; Das, R.; Bhattachajee, C. Influence of Nanoparticles for Wastewater Treatment-A Short Review. Austin Chem. Eng. 2016, 3, 1036–1045. [Google Scholar]
- Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water res 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Nadagouda, M.N.; Sillanpaa, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostructure Chem. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Raliya, S.R.; Avery, C.; Chakrabarti, S.; Biswas, P. Photocatalytic degradation of methyl orange dye by pristine TiO2, ZnO, and graphene oxide nanostructures and their composites under visible light irradiation. Appl. Nano Sci. 2017, 7, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Cui, S.; Li, H.; Abdelhady, A.; Wang, H.; Zhou, H. Removal effect on stormwater runoff pollution of porous concrete treated with nanometre titanium dioxide. Transp. Res. D 2019, 73, 34–45. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, N.R.; Singh, J.; Kanwar, R.S. Biological methods for textile dye removal from wastewater: A review. Critcal Rev. Environ. Sci. Technol. 2017, 47, 1836–1876. [Google Scholar] [CrossRef]
- Sherman, J. Nanoparticulate Titanium Dioxide Coatings, and Processes for the Production and Use Thereof. U.S. Patent No, 6653356B2, 25 November 2003. [Google Scholar]
- Ali, I.; Ghamdi, K.A.; Wadaani, F.T.A. Advances in iridium nano catalyst preparation, characterization and applications. J. Mol. Liq. 2019, 280, 274–284. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Shende, T.P.; Sonawane, S.H. A review on grapheme-TiO2 and doped grapheme-TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Yamakata, A.; Junie Jhon, M.V. Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: A review. J. Photochem. Photobiol C Phtotochem. Rev. 2019, 40, 234–243. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Li, J.; Hu, Z.; Zhao, H.; Xie, W.; Wei, Z. Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing. Mater Res. Bull. 2018, 98, 280–287. [Google Scholar] [CrossRef]
- Di Mauro, A.; Cantarella, M.; Nicotra, G.; Pellegrino, G.; Gulino, A.; Brundo, M.V.; Privitera, V.; Impellizzeri, G. Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Sci. Rep. 2017, 7, 40–95. [Google Scholar] [CrossRef]
- Hassan, A.F.; Elhadidy, H. Effect of Zr+4 doping on characteristics and sono catalytic activity of TiO2/carbon nanotubes composite catalyst for degradation of chlorpyrifos. J. Phys. Chem. Solids 2019, 129, 180–187. [Google Scholar] [CrossRef]
- Das, P.; Ghosh, S.; Ghosh, R.; Dam, S.; Baskey, M. Madhuca longifolia plant mediated green synthesis of cupric oxide nanoparticles: A promising environmentally sustainable material for wastewater treatment and efficient antibacterial agent. J. Photochem. Photobiol. 2018, 189, 66–73. [Google Scholar] [CrossRef]
- Guya, N.; Cakar, S.; Ozacar, M. Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. J. Colloid Interface Sci. 2016, 466, 128–137. [Google Scholar] [CrossRef]
- Bishoge, O.K.; Zhang, L.; Suntu, S.L.; Jin, H.; Zewde, A.A.; Qi, Z. Remediation of water and wastewater by using engineered nanomaterials: A review. J. Environ. Sci. Heal A 2018, 53, 537–554. [Google Scholar] [CrossRef]
- Li, X.; Xia, T.; Xu, C.; Murowchick, J.; Chen, X. Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal Today 2014, 225, 64–73. [Google Scholar] [CrossRef]
- Boyano, A.; Lázaro, M.J.; Cristiani, C.; Maldonado-Hodar, F.J.; Forzatti, P.; Moliner, R. A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3. Chem. Eng. J. 2009, 149, 173–182. [Google Scholar] [CrossRef]
- Serrà, A.; Zhang, Y.; Sepúlveda, B.; Gómez, E.; Nogués, J.; Michler, J.; Philippe, L. Highly reduced ecotoxicity of ZnO-Based micro/nanostructures on aquatic biota: Influence of architecture, chemical composition, fixation, and photocatalytic efficiency. Water Res. 2020, 69, 115210. [Google Scholar] [CrossRef]
- Ameta, R.; Benjamin, S.; Ameta, A.; Ameta, S.C. Photocatalytic degradation of organic pollutants: A review. Mater. Sci. Forum 2013, 734, 247–272. [Google Scholar] [CrossRef]
- Phokha, S.; Klinkaewnarong, J.; Hunpratub, S.; Boonserm, K.; Swatsitang, E.; Maensiri, S. Ferromagnetism in Fe-Doped MgO nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 33–39. [Google Scholar] [CrossRef]
- Berekaa, M.M. Nanotechnology in wastewater treatment; influence of nanomaterials on microbial systems. Int. J. Curr. Microbiol. App. Sci 2016, 5, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Hameed, S.; Siddiqui, M.J.; Haque, M.M.; Umar, K.; Khan, A.; Muneer, M. Electrical and optical properties of nickel-and molybdenum-doped titanium dioxide nanoparticle: Improved performance in dye-sensitized solar cells. J. Mater. Eng. Perform. 2014, 23, 3184–3192. [Google Scholar] [CrossRef]
- Serrà, A.; Grau, S.; Gimbert-Suriñach, C.; Sort, J.; Nogués, J.; Vallés, E. Magnetically-Actuated mesoporous nanowires for enhanced heterogeneous catalysis. App. Catal B Environ. 2017, 217, 81–91. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef] [Green Version]
- Kohtani, S.; Kawashima, A.; Miyabe, H. Stereoselective Organic Reactions in Heterogeneous Semiconductor Photocatalysis. Front Chem. 2019, 7, 630. [Google Scholar] [CrossRef]
- Lekshmi, M.V.; Nagendra, S.S.; Maiya, M.P. Heterogeneous Photocatalysis for Indoor Air Purification: Recent Advances in Technology from Material to Reactor Modeling. In Indoor Environmental Quality; Springer: Berlin/Heidelberg, Germany, 2020; pp. 147–166. [Google Scholar]
- Kanmani, S.; Sundar, K.P. Progression of Photocatalytic reactors and it’s comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar]
- Parrino, F.; Loddo, V.; Augugliaro, V.; Camera-Roda, G.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Heterogeneous photocatalysis: Guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catal Rev. 2019, 61, 163–213. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Radhika, N.P.; Selvin, R.; Kakkar, R.; Umar, A. Recent advances in nano-photocatalysts for organic synthesis. Arab. J. Chem. 2019, 12, 4550–4578. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.B.; Kiran, H.; Iqbal, T. The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: A review. Environ. Sci. Pollut. Res. 2019, 26, 10515–10528. [Google Scholar] [CrossRef] [PubMed]
- Ciambelli, P.; La Guardia, G.; Vitale, L. Nanotechnology for green materials and processes. Stud. Surf. Sci. Catal. 2019, 179, 97–116. [Google Scholar]
- Weng, B.; Qi, M.Y.; Han, C.; Tang, Z.R.; Xu, Y.J. Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catal. 2019, 9, 4642–4687. [Google Scholar] [CrossRef]
- Rajabi, H.R.; Shahrezaei, F.; Farsi, M. Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J. Mater. Sci. Mater. Electron. 2016, 27, 9297–9305. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Arami, M. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J. Photoch. Photobio. B 2009, 94, 20–24. [Google Scholar] [CrossRef]
- Van Gerven, T.; Mul, G.; Moulijn, J.; Stankiewicz, A. A review of intensification of photocatalytic processes. Chem. Eng. Process. Process Intensif. 2007, 46, 781–789. [Google Scholar] [CrossRef]
- Lin, W.Y.; Wang, Y.; Wang, S.; Tseng, H.R. Integrated microfluidic reactors. Nano Today 2009, 4, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, X.; Wang, Y.; Yu, W.; Chan, H.L. Microfluidic reactors for photocatalytic water purification. Lab on a Chip 2014, 14, 1074–1082. [Google Scholar] [CrossRef]
- Umar, K.; Dar, A.A.; Haque, M.M.; Mir, N.A.; Muneer, M. Photocatalysed decolourization of two textile dye derivatives, Martius Yellow and Acid Blue 129 in UV-irradiated aqueous suspensions of Titania. Desal. Water Treat. 2012, 46, 205–214. [Google Scholar] [CrossRef]
- Rasolevandi, T.; Naseri, S.; Azarpira, H.; Mahvi, A.H. Photo-Degradation of dexamethasone phosphate using UV/Iodide process: Kinetics, intermediates, and transformation pathways. J. Mol. Liq. 2019, 295, 111703–111710. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravind, U.K.; Aravindakumar, C.T. Photocatalytic degradation of lignocaine in aqueous suspension of TiO2 nanoparticles: Mechanism of degradation and mineralization. J. Environ. Chem. Eng. 2018, 6, 3556–3564. [Google Scholar] [CrossRef]
- Jurado-Sánchez, B.; Wang, J. Micromotors for environmental applications: A review. Environ. Sci. Nano 2018, 5, 1530–1544. [Google Scholar] [CrossRef]
- Moo, J.G.S.; Pumera, M. Chemical energy powered nano/micro/macromotors and the environment. Chem.–A Eur. J. 2015, 21, 58–72. [Google Scholar] [CrossRef]
- Pacheco, M.; López, M.Á.; Jurado-Sánchez, B.; Escarpa, A. Self-Propelled micromachines for analytical sensing: A critical review. Anal. Bioanal. Chem. 2019, 411, 6561–6573. [Google Scholar] [CrossRef]
- Chi, Q.; Wang, Z.; Tian, F.; You, J.A.; Xu, S. A review of fast bubble-Driven micromotors powered by biocompatible fuel: Low-Concentration fuel, bioactive fluid and enzyme. Micromachine 2018, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- García-Torres, J.; Serrà, A.; Tierno, P.; Alcobé, X.; Vallés, E. Magnetic propulsion of recyclable catalytic nanocleaners for pollutant degradation. ACS Appl. Mater. Interfac. 2017, 9, 23859–23868. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Pumera, M. Multifunctional and self-Propelled spherical Janus nano/micromotors: Recent advances. Nanoscale 2018, 10, 16398–16415. [Google Scholar] [CrossRef]
- Eskandarloo, H.; Kierulf, A.; Abbaspourrad, A. Nano-and micromotors for cleaning polluted waters: Focused review on pollutant removal mechanisms. Nanoscale 2017, 9, 13850–13863. [Google Scholar] [CrossRef]
- Gao, W.; Uygun, A.; Wang, J. Hydrogen-Bubble-Propelled Zinc-Based Microrockets in Strongly Acidic Media. J. Am. Chem. Soc. 2012, 134, 897–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Stuart, E.J.E.; Pumera, M. Enhanced Diffusion of Pollutants by Self-Propulsion. Phys. Chem. Chem. Phys. 2011, 13, 12755–12757. [Google Scholar] [CrossRef] [PubMed]
- Seah, T.H.; Zhao, G.; Pumera, M. Surfactant Capsules Propel Interfacial Oil Droplets: An Environmental Cleanup Strategy. Chem. Plus. Chem. 2013, 78, 395–397. [Google Scholar]
- Kagan, D.; Calvo-Marzal, P.; Balasubramanian, S.; Sattayasamitsathit, S.; Manesh, K.M.; Flechsig, G.U.; Wang, J. Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. J. Am. Chem. Soc. 2009, 131, 12082–12083. [Google Scholar] [CrossRef] [Green Version]
- Orozco, J.; Cortes, A.; Cheng, G.; Sattayasamitsathit, S.; Gao, W.; Feng, X.; Shen, Y.; Wang, J. Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport. J. Am. Chem. Soc. 2013, 135, 5336–5339. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Balasubramanian, S.; Kagan, D.; Manesh, K.M.; Campuzano, S.; Wang, J. Motion-Based DNA Detection Using Catalytic Nanomotors. Nat. Commun. 2010, 1, 36. [Google Scholar] [CrossRef]
- Orozco, J.; Cheng, G.; Vilela, D.; Sattayasamitsathit, S.; Vazquez-Duhalt, R.; Valdes-Ramirez, G.; Pak, O.S.; Escarpa, A.; Kan, C.; Wang, J. Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats. Angew. Chem. Int. Ed. 2013, 52, 13276–13279. [Google Scholar] [CrossRef]
- Soler, L.; Magdanz, V.; Fomin, V.M.; Sanchez, S.; Schmidt, O.G. Self-Propelled Micromotors for Cleaning Polluted Water. ACS Nano 2013, 7, 9611–9620. [Google Scholar] [CrossRef]
- Guix, M.; Orozco, J.; Garcia, M.; Gao, W.; Sattayasamitsathit, S.; Merkoci, A.; Escarpa, A.; Wang, J. Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano 2012, 6, 4445–4451. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Pei, A.; Dong, R.; Wang, J. Catalytic Iridium-Based Janus Micromotors Powered by Ultralow Levels of Chemical Fuels. J. Am. Chem. Soc. 2014, 136, 2276–2279. [Google Scholar] [CrossRef] [Green Version]
- Dey, K.K.; Bhandari, S.; Bandyopadhyay, D.; Basu, S.; Chattopadhyay, A. The pH Taxis of an Intelligent Catalytic Microbot. Small 2013, 9, 1916–1920. [Google Scholar] [CrossRef] [PubMed]
- Soler, L.; Sánchez, S. Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 2014, 6, 7175–7182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Singh, V.V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R.; Gao, W.; Jurado-Sanchez, B.; Fedorak, Y.; Wang, J. Water-Driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 2014, 8, 11118–11125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orozco, J.; Mercante, L.A.; Pol, R.; Merkoçi, A. Graphene-Based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 2016, 4, 3371–3378. [Google Scholar] [CrossRef]
- Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-Temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catal Today 2011, 175, 147–156. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Villa, K.; Ying, Y.; Sofer, Z.; Pumera, M. ZnO/ZnO2/Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Appl. Mater. Interfaces 2018, 10, 42688–42697. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Guix, M.; Schmidt, O.G. Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 2016, 16, 817–821. [Google Scholar] [CrossRef]
- Liu, J.; Hong, C.; Shi, X.; Nawar, S.; Werner, J.; Huang, G.; Ye, M.; Weitz, D.A.; Solovev, A.A.; Mei, Y. Hydrogel Microcapsules with Photocatalytic Nanoparticles for Removal of Organic Pollutants. Environ. Sci. Nano 2020. [Google Scholar] [CrossRef]
- Gao, W.; D′Agostino, M.; Garcia-Gradilla, V.; Orozco, J.; Wang, J. Multi-fuel driven janus micromotors. Small 2013, 9, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Pourrahimi, A.M.; Liu, D.; Ström, V.; Hedenqvist, M.S.; Olsson, R.T.; Gedde, U.W. Heat treatment of ZnO nanoparticles: New methods to achieve high-Purity nanoparticles for high-voltage applications. J. Mater. Chem. A 2015, 3, 17190–17200. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.; Chen, X.; Liu, W.; Lu, X.; Gu, Z. Metal-Based Transient Micromotors: From Principle to Environmental and Biomedical Applications. Chem.–Asian J. 2019, 14, 2348–2356. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, R.; Wu, Y.; Gao, W.; He, Z.; Ren, B. Light-Driven Au-WO3@ C Janus micromotors for rapid photodegradation of dye pollutants. ACS App. Mater. Interface 2017, 9, 4674–4683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, K.; Zhang, L. Micro/nanomachines: From functionalization to sensing and removal. Adv. Mater. Technol. 2019, 4, 1800636–1800658. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Khezri, B.; Pumera, M. Catalytic DNA-Functionalized self-Propelled micromachines for environmental remediation. Chem. 2016, 1, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Huang, G.; Wang, L.; Wang, T.; Liu, L.; Di, Z.; Liu, X.; Mei, Y. Rolled-Up Monolayer Graphene Tubular Micromotors: Enhanced Performance and Antibacterial Property. Chem.–Asian J. 2019, 14, 2479–2484. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, H.; Yuan, L.; Li, Z.; Zhang, P.; Gibson, J.K.; Zheng, L.; Wang, H.; Chai, Z.; Shi, W. Effective Removal of Anionic Re (VII) by Surface-Modified Ti2CT x MXene Nanocomposites: Implications for Tc (VII) Sequestration. Environ. Sci. Technol. 2019, 53, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Dong, R.; Thamphiwatana, S.; Li, J.; Gao, W.; Zhang, L.; Wang, J. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors. ACS Nano 2015, 9, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Safdar, M.; Simmchen, J.; Jänis, J. Correction: Light-Driven micro-and nanomotors for environmental remediation. Environ. Sci. Nano 2017, 4, 2235. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Ying, Y.; Pumera, M. Micro/Nanomotors for Water Purification. Chem–Eur. J. 2019, 25, 106–121. [Google Scholar] [CrossRef]
- Fernández-Medina, M.; Ramos-Docampo, M.A.; Hovorka, O.; Salgueiriño, V.; Städler, B. Recent Advances in Nano-and Micromotors. Adv. Funct. Mater. 2020, 1908283–19082299. [Google Scholar] [CrossRef]
- Jhaveri, J.H.; Murthy, Z.V.P. A comprehensive review on anti-Fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Hogen-Esch, T.; Pirbazari, M.; Ravindran, V.; Yurdacan, H.M.; Kim, W. High Performance Membranes for Water Reclamation Using Polymeric and Nanomaterials. U.S. Patent No. 20160038885A, 29 October 2019. [Google Scholar]
- Waduge, P.; Larkin, J.; Upmanyu, M.; Kar, S.; Wanunu, M. Programmed Synthesis of Freestanding Graphene Nanomembrane Arrays. Nano Microphone 2015, 11, 597–603. [Google Scholar]
- Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S.; Abdel Hamid, S.M.S.; Drioli, E. A review of polymeric nanocomposite membranes for water purification. J. Ind. Eng. Chem. 2019, 73, 19–46. [Google Scholar] [CrossRef]
- Zahid, M.; Rashid, A.; Akram, S.; Rehan, Z.A.; Razzaq, W. A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment. J. Membr. Sci. Technol. 2018, 8, 179–190. [Google Scholar] [CrossRef]
- Saleh, A.; Parthasarathy, P.; Irfan, M. Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends Environ Anal. 2019, 24, 67–78. [Google Scholar] [CrossRef]
- Kochkodan, V.; Hilal, N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 2015, 356, 187–207. [Google Scholar] [CrossRef]
- Ronen, A.; Duan, W.; Wheeldon, I.; Walker, S.; Jassby, D. Microbial Attachment Inhibition through Low-Voltage Electrochemical Reactions on Electrically Conducting Membranes. Environ. Sci. Technol. 2015, 49, 12741–12750. [Google Scholar] [CrossRef]
- Yin, J.; Yang, Y.; Hu, Z.; Deng, B. Attachment of silver nanoparticles (AgNPs) onto thin-Film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J. Membr. Sci. 2013, 441, 73–82. [Google Scholar] [CrossRef]
- Zhang, M.; Field, R.W.; Zhang, K. Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J. Membr. Sci. 2014, 471, 274–284. [Google Scholar] [CrossRef]
- Hirata, K.; Watanabe, H.; Kubo, W. Nanomembranes as a substrate for ultra-thin lightweight devices. Thin Solid Film. 2019, 676, 8–11. [Google Scholar] [CrossRef]
- Gopalakrishnan, I.; Samuel, S.R.; Sridharan, K. nanomaterials-Based adsorbents for water and waste water treatment. Emerg. Nanotechnol. Environ. Sustain. 2018, 6, 89–98. [Google Scholar]
- Liu, S.; Wang, Y.; Zhou, Z.; Hana, W.; Li, J.; Shen, J.; Wang, I. Improved degradation of the aqueous flutriafol using a nanostructure microporous PbO2 as reactive electrochemical membrane. Electrochim. Acta 2017, 253, 357–367. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-Based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces 2019, 178, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Kunduru, R.K.; Kovsky, M.N.; Rajendra, S.F.; Pawar, P.; Basu, A.; Domb, A.J. Nanotechnology for water purification: Applications of nanotechnology methods in wastewater treatment. Water Purif. 2017, 10, 33–74. [Google Scholar]
- Ibrahim, R.K.; Hayyan, M.; Al-saadi, M.A.; Hayyan, A.; Ibrahim, S. Environmental application of nanotechnology; air, soil, and water. Environ. Sci. Pollut. R 2016, 23, 13754–13788. [Google Scholar] [CrossRef] [PubMed]
- Mekaru, H.; Lu, J.; Tamanoi, F. Development of mesoporous silica-Based nanoparticles with controlled release capability for cancer therapy. Adv. Drug Deliv. Rev. 2015, 95, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Jawed, A.; Saxena, V.; Pandey, L.M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. J. Wat. Process. Eng. 2020, 33, 101009. [Google Scholar] [CrossRef]
- Umar, K.; Aris, A.; Ahmad, H.; Parveen, T.; Jaafar, J.; Majid, Z.A.; Reddy, A.V.B.; Talib, J. Synthesis of visible light active doped TiO2 for the degradation of organic pollutants-Methylene blue and glyphosate. J. Anal. Sci. Technol. 2016, 7, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Patil, P.; Kim, G.D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Coll. Surface B 2018, 172, 487–495. [Google Scholar]
- Al-Ghouti, M.A.; Kaabi, M.A.A.; Ashfaq, M.Y.; Dana, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Proc. Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Ahn, Y.Y.; Yun, E.T.; Seo, J.W.; Lee, C.; Kim, S.H.; Lee, J. Activation of peroxymonosulfate by surface loaded Nobel metal nanoparticles for oxidative degradation of organic compounds. Environ. Sci. Technol. 2016, 50, 10187–10197. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Review Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Bhat, A.H.; Rehman, W.U.; Khan, I.U.; Ahmad, S.; Ayoub, M.; Usmani, M.A. Nanocomposite membrane for environmental remediation. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Jawaid, M., Khan, M.M., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 407–440. [Google Scholar]
- Muntha, S.T.; Kausar, A.; Siddiq, M. Advances in polymeric nanofiltration membrane: A review. Polym.-Plast Technol. Eng. 2017, 56, 841–856. [Google Scholar] [CrossRef]
- Rashidi, H.R.; Sulaiman, N.M.N.; Hashim, N.A.; Hassan, C.R.C.; Ramli, M.R. Synthetic reactive dye wastewater treatment by using nano-Membrane filtration. Desalin. Water Treat. 2015, 55, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Belloň, T.; Polezhaev, P.; Vobecká, L.; Slouka, Z. Fouling of a heterogeneous anion-Exchange membrane and single anion-Exchange resin particle by ssdna manifests differently. J. Membr. Sci. 2019, 572, 619–631. [Google Scholar] [CrossRef]
- Naeem, F.; Naeem, S.; Zhao, Z.; Shu, G.Q.; Zhang, J.; Mei, Y.; Huang, G.S. Atomic layer deposition synthesized ZnO nanomembranes: A facile route towards stable supercapacitor electrode for high capacitance. J. Power Source 2020, 451, 227740. [Google Scholar] [CrossRef]
- Feng, C.; Khulbe, K.C.; Matsuura, T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 2010, 115, 756–776. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Tang, C.; Wang, Z.; Petrinić, I.; Fane, A.G.; Hélix-Nielsen, C. Biomimetic aquaporin membranes coming of age. Desalination 2015, 368, 89–105. [Google Scholar] [CrossRef]
- Cornwell, D.J.; Smith, D.K. Expanding the scope of gels–Combining polymers with low-MOLECULAR-Weight gelators to yield modified self-Assembling smart materials with high-Tech applications. Mater. Horiz. 2015, 2, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Asatekin, A.; Menniti, A.; Kang, S.; Elimelech, M.; Morgenroth, E.; Mayes, A.M. Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. J. Membr. Sci. 2006, 285, 81–89. [Google Scholar] [CrossRef]
- Ying, Y.; Ying, W.; Li, Q.; Meng, D.; Ren, G.; Yan, R.; Peng, X. Recent advances of nanomaterial-Based membrane for water purification. App. Mater. Today 2017, 7, 144–158. [Google Scholar] [CrossRef]
- Montemagno, C.; Schmidt, J.; Tozzi, S. Biomimetic Membranes. U.S. Patent No. 20040049230, 11 March 2004. [Google Scholar]
- Salim, W.; Ho, W.S.W. Recent developments on nanostructured polymer-Based membranes. Curr. Opin. Chem. Eng. 2015, 8, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Ruan, S.; Xu, X.; Zou, R.; Hu, J. Review One-Dimensional nanomaterial-Assembled macroscopic membranes for water treatment. Nano Today 2017, 17, 79–95. [Google Scholar] [CrossRef]
- Fuwad, A.; Ryu, H.; Malmstadt, N.; Kim, S.M.; Jeon, T.J. Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination 2019, 458, 97–115. [Google Scholar] [CrossRef]
- Shen, Y.X.; Saboe, P.O.; Sines, I.T.; Erbakan, M.; Kumar, M. Biomimetic membranes: A review. J. Membr. Sci. 2014, 454, 359–381. [Google Scholar] [CrossRef]
- Peng, F.; Xu, T.; Wu, F.; Ma, C.X.; Liu, Y.; Li, J.; Zhao, B.; Mao, C. Novel biomimetic enzyme for sensitive detection of superoxide anions. Talanta 2017, 174, 82–91. [Google Scholar] [CrossRef]
- Giwa, A.; Hasan, S.W.; Yousaf, A.; Chakraborty, S.; Johnson, D.J.; Hilal, N. Biomimetic membranes: A critical review of recent progress. Desalination 2017, 420, 403–424. [Google Scholar] [CrossRef] [Green Version]
- Diallo, M.S. Water Treatment by Dendrimer-Enhanced Filtration. U.S. Patent No. 2009/0223896, 10 September 2009. [Google Scholar]
- Sahebi, S.; Sheikhi, M.; Ramavandi, B. A new biomimetic aquaporin thin film composite membrane for forward osmosis: Characterization and performance assessment. Desalin. Water Treat. 2019, 148, 42–50. [Google Scholar] [CrossRef]
- Perez, T.; Pasquini, D.; Lima, A.F.; Rosa, E.V.; Sousa, M.H.; Cerqueira, D.A.; Morais, L.C. Efficient removal of lead ions from water by magnetic nanosorbents based on manganese ferrite nano particles capped with thin layers of modified biopolymers. J. Environ. Chem. Eng. 2019, 7, 802–892. [Google Scholar] [CrossRef]
- Manikam, M.K.; Halim, A.A.; Hanafiah, M.M.; Krishnamoorthy, R.R. Removal of ammonia nitrogen, nitrate, phosphorus and COD from sewage wastewater using palm oil boiler ash composite adsorbent. Desal. Water Treat. 2019, 149, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Charee, S.W.; Aravinthan, V.; Erdei, L.; Raj, W.S. Use of macadamia nut shell residues as magnetic nanosorbents. Int. Biodeter. Biodegr. 2017, 124, 276–287. [Google Scholar]
- Rodovalho, F.L.; Capistrano, G.; Gomes, J.A.; Sodre, F.F.; Chaker, J.A.; Campos, A.F.C.; Bakuzis, A.F.; Sousa, A.H. Elaboration of magneto-Thermally recyclable nanosorbents for remote removal of toluene in contaminated water using magnetic hyperthermia. Chem. Eng. J. 2016, 15, 725–732. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Zhang, G.; Qiu, G.; Zhong, N.; Wu, L.; Cai, D.; Wu, Z. Reducing the pollution risk of pesticide using nano networks induced by irradiation and hydrothermal treatment. J. Environ. Sci. Health C 2015, 50, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.J.; Foo, L.P.Y.; Tan, K.W.; Hassell, D.G.; Lee, L.Y. Evaluation of carbon-Based nanosorbents synthesized by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution. J. Environ. Sci. 2012, 24, 1559–1568. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Matis, K.A. Review Nanoadsorbents for pollutants removal: A review. J. Mol. Liq. 2015, 203, 159–168. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Hou, C.; Liu, M. Mussel-Inspired synthesis of magnetic polydopamine–Chitosan nanoparticles as bio sorbent for dyes and metals removal. J. Taiwan Inst. Chem. E 2016, 61, 292–298. [Google Scholar] [CrossRef]
- Krstić, V.; Pesovski, T.U.B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Taubert, A. Review article Clay-Polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Appl. Clay Sci. 2014, 99, 83–92. [Google Scholar] [CrossRef]
- Yadav, V.B.; Gadi, R.; Kalra, S. Clay based nanocomposites for removal of heavy metals from water: A review. J. Environ. Manag. 2019, 232, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Vunain, E.; Mishra, A.K.; Mamba, B.B. Dendrimers, mesoporous silicas and chitosan-Based nanosorbents for the removal of heavy-Metal ions: A review. Int. J. Biolog. Macromol. 2016, 86, 570–586. [Google Scholar] [CrossRef] [PubMed]
- Khajeh, M.; Laurent, S.; Dastafkan, K. Nanoadsorbents: Classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 2013, 113, 7728–7768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Hu, C.Z.; Liu, F.; Yuan, Y.; Wu, H.; Li, A. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Sci. Total Environ. 2019, 646, 265–279. [Google Scholar] [CrossRef]
- Kobielska, P.; Howarth, A.J.; Farha, O.K.; Nayak, S. Review Metal–Organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; Bezerra, C.O.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-Cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Brandao, D.; Liebana, S.; Pividori, M.I. Multiplexed detection of foodborne pathogens based on magnetic particles. New Biotechnol. 2015, 8, 76–82. [Google Scholar] [CrossRef]
- Jones, D.; Caballero, S.; Pardo, G.D. Bioavailability of nanotechnology-Based bioactive and nutraceuticals. Adv. Food Nutr. Res. 2019, 1, 2–9. [Google Scholar]
- Wang, S.; Lu, W.; Tovmachenko, O.; Rai, U.S.; Yu, H.; Ray, P.C. Challenge in Understanding Size and Shape Dependent Toxicity of Gold Nanomaterials in Human Skin Keratinocytes. Chem. Phys. Lett. 2008, 463, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, S. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 2006, 22, 2–5. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Ajdary, M.; Moosavi, M.A.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, I.S.; Mohammad inejad, R.; Varma, R.S. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomater 2018, 1, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, P.C.; Hongtao, Y.; Peter, P. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 1–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taju, G.; Majeed, S.A.; Nambi, K.; Hameed, A.S. In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of catla catla and gill cell line of labeo rohita. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014, 161, 41–52. [Google Scholar] [CrossRef]
- Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of carbon nanomaterials: Single-Wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383. [Google Scholar] [CrossRef]
- Baig, N.; Ihsanullah, M.; Sajjid, T.A.; Saleh, A. Graphene-Based adsorbents for the removal of toxic organic pollutants: A review. J. Environ. Manag. 2019, 244, 370–382. [Google Scholar] [CrossRef]
- Mansoori, G.A.; Bastami, T.R.; Ahmadpour, A.; Eshaghi, Z. Environmental application of nanotechnology. Annu. Rev. Nano Res. 2008, 2, 439–493. [Google Scholar]
- Ersan, G.; Apul, O.G.; Perreault, F.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets: A review. Water Res. 2017, 126, 385–398. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Pounara, A.; Vellingiri, K.; Kim, K.H. Nanomaterials for the sensing of narcotics: Challenges and opportunities. Trends Anal Chem. 2018, 2, 84–115. [Google Scholar] [CrossRef]
- Heijden, V.D. Developments and challenges in the manufacturing, characterization and scale-Up of energetic nanomaterials-A review. Chem. Eng. J. 2018, 350, 939–948. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.A.; Keller, A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef] [Green Version]
- Pandey, N.; Shukla, S.K.; Singh, N.B. Water purification by polymer nanocomposites: An overview. Nanocomposites 2017, 3, 47–66. [Google Scholar] [CrossRef]
- Santhosh, C.; Velmurugan, V.P.; Jacob, G.; Jeong, S.K.; Grace, N.A.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Tate, J.E.; Burton, A.H.; Pinto, C.B. Global, Regional, and National Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000–2013. Clin. Infect. Dis. 2016, 62, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prathna, T.C.; Sharma, S.K.; Kennedy, M. Review Nanoparticles in household level water treatment: An overview. Sep. Purif. Technol. 2018, 199, 260–270. [Google Scholar]
- Umar, K.; Haque, M.M.; Muneer, M.; Harada, T.; Matsumura, M. Mo, Mn and La doped TiO2: Synthesis, characterization and photocatalytic activity for the decolourization of three different chromophoric dyes. J. Alloy Compd. 2013, 578, 431–438. [Google Scholar] [CrossRef]
- Soppe, A.I.A.; Heijman, S.G.J.; Gensburger, I.; Shantz, A.; Halem, D.V.; Kroesbergen, J.; Wubbels, G.H.; Smeets, P.W.M.H. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries. J. Water Health 2014, 13, 587–599. [Google Scholar] [CrossRef]
- Bushra, R.; Shahadat, M.; Ahmad, A.; Nabi, S.A.; Umar, K.; Muneer, M.; Raeissia, A.S.; Owais, M. Synthesis, characterization, antimicrobial activity and applications of composite adsorbent for the analysis of organic and inorganic pollutants. J. Hazard. Mater. 2014, 264, 481–489. [Google Scholar] [CrossRef]
- Nor, N.A.M.; Jaafar, J.; Othman, M.H.D.; Rahman, M.A. A review study of nanofibers in photocatalytic process for wastewater treatment. J. Teknologi. 2013, 65, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Z.; Wang, X.; Feng, Y.; Li, J.; Lim, C.T.; Ramakrishna, S. Coaxial electrospinning of (fluorescein isothiocyanate-Conjugated bovine serum albumin)-Encapsulated poly (ε-caprolactone) nanofibers for sustained release. Biomacromolecule 2006, 7, 1049–1057. [Google Scholar] [CrossRef]
- Chuang, C.S.; Wang, M.K.; Ko, C.H.; Ou, C.C.; Wu, C.H. Removal of benzene and toluene by carbonized bamboo materials modified with TiO2. Bioresour. Technol. 2008, 99, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Chang, H.W.; Chern, J.M. Basic dye decomposition kinetics in a photocatalytic slurry reactor. J. Hazard Mater. 2006, 137, 336–343. [Google Scholar] [CrossRef]
- Paek, S.M.; Jung, H.; Lee, Y.J.; Park, M.; Hwang, S.J.; Choy, J.H. Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem. Mater. 2006, 18, 1134–1140. [Google Scholar] [CrossRef]
- Fu, W.; Yang, H.; Chang, L.; Li, M.; Zou, G. Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst. Colloid Surf. A Physicochem. Eng. Asp. 2006, 289, 47–52. [Google Scholar] [CrossRef]
- Hamadanian, M.; Reisi-Vanani, A.; Majedi, A. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles. Appl. Surf. Sci. 2010, 256, 1837–1844. [Google Scholar] [CrossRef]
- Yu, C.; Cai, D.; Yang, K.; Yu, J.C.; Zhou, Y.; Fan, C. Sol–gel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-Light photocatalytic activity. J. Phys. Chem. Solids 2010, 71, 1337–1343. [Google Scholar] [CrossRef]
- Umar, M.; Aziz, H.A. Photocatalytic degradation of organic pollutants in water. Org. Pollut.-Monit. Risk Treat. 2013, 8, 196–197. [Google Scholar]
- Dimapilis, E.A.S.; Hsu, C.S.; Mendoza, R.M.O.; Lu, M.C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Sultana, S.; Rafiuddin; Khan, M.Z.; Umar, K.; Ahmed, A.S.; Shahadat, M. SnO2-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants. J. Mol. Struct. 2015, 1098, 393–399. [Google Scholar] [CrossRef]
- Faisal, M.; Tariq, M.A.; Khan, A.; Umar, K.; Muneer, M. Photochemical reactions of 2, 4-dichloroaniline and 4-nitroanisole in aqueous suspension of titanium dioxide. Sci. Adv. Mater. 2011, 3, 269–275. [Google Scholar] [CrossRef]
- He, D.; Sun, Y.; Xin, L.; Feng, J. Aqueous tetracycline degradation by non-Thermal plasma combined with nano-TiO2. Chem. Eng. J. 2014, 258, 18–25. [Google Scholar] [CrossRef]
- Mir, N.A.; Khan, A.; Umar, K.; Muneer, M. Photocatalytic Study of a Xanthene Dye Derivative, Phloxine B in Aqueous Suspension of TiO2: Adsorption Isotherm and Decolourization Kinetics. Energy Environ. Focus 2013, 2, 208–216. [Google Scholar] [CrossRef]
- Dar, A.A.; Umar, K.; Mir, N.A.; Haque, M.M.; Muneer, M.; Boxall, C. Photocatalysed degradation of an herbicide derivative, Dinoterb, in aqueous suspension. Res. Chem. Intermediat. 2011, 37, 567–578. [Google Scholar] [CrossRef]
- Schlosser, D. Biotechnologies for Water Treatment. In Advanced Nano-Bio Technologies for Water and Soil Treatment; Springer, Cham: Berlin/Heidelberg, Germany, 2020; pp. 335–343. [Google Scholar]
- Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 2020, 408, 213180. [Google Scholar] [CrossRef]
Water Pollutants | Source of Pollutants | Effect of Pollutants | References |
---|---|---|---|
Pathogens | Viruses and bacteria | Water borne diseases | [18] |
Agricultural Pollutants | Agricultural chemicals | Directly affect the fresh water resources | [19] |
Sediments and suspended solids | Land cultivation, demolition, mining operations | Damaging fish spawning, affecting aquatic environment of insects and fishes | [20] |
Inorganic Pollutants | Metals compounds, Trace elements, Inorganic salts, Heavy metals, Mineral acids, | Aquatic flora and fauna, Public Health problems | [21] |
Organic Pollutants | Detergents, Insecticides, Herbicides. | Aquatic life problems, Cacogenic. | [22] |
Industrial Pollutants | Municipal pollutant Water | Caused water and air pollution. | [23] |
Radioactive Pollutants | Different Isotopes | Bones, teeth, skin and can cause | [24] |
Nutrients Pollutants | Plant debris, fertilizer. | Effect on eutrophication process. | [25] |
Macroscopic Pollutants | Marine debris | Plastic pollution. | [26] |
Sewage and contaminated water | Domestic Wastewater | Water borne diseases | [27] |
Motors | Working Mechanism | Applications | References |
---|---|---|---|
Zn, Al/Pd micromotors | speed-pH dependence | pH controlling | [85] |
Hydrophobic agglomerates of pollutants | Surface tension induced | Increased diffusion of pollutants | [86] |
Polymer capsule motors | Surface tension induced cargo towing | Oil remediation | [87] |
Au/Pt nanomotors | silver-induced acceleration | Detection of silver ions | [88] |
Ag-based Janus MIP microparticles | Molecular imprinted polymer recognition | solid-phase extraction | [89] |
Au/Pt nanomotors | DNA hybridization through using Ag nanoparticle | DNA detection | [90] |
Bubble-propelled Pt-based micro engines | High fluid transport | Oxidative detoxification of nerve agents | [91] |
Bubble-propelled Pt-based micro engines | Fenton reaction; high diffusion | Degradation of organic pollutants | [92] |
SAM modified Pt micro engines | Hydrophobic interactions with oil droplets | Oil removal | [93] |
Ir/SiO2 Janus motors | Speed-concentration dependence | Detection of hydrazine | [94] |
Pd nanoparticle-containing Microspheres | pH dependence | pH monitoring | [95] |
Type of Nanomotors | Target Pollutants | Operational Mechanism | Fuel | References |
---|---|---|---|---|
PEDOT/Pt bilayer nanomotor | Organophosphorus nerve Agents | Oxidative neutralization | H2O2 | [96] |
Ag-incorporated zeolite | - | Adsorptive Detoxification | H2O2 | [97] |
rGO-SiO2–Pt Janus magnetic micromotors | Polybrominated diphenyl ethers (PBDEs) and 5-chloro-2-(2,4-dichlorophene) phenol (triclosan) | Adsorption | H2O2 | [98] |
Pt coating Activated carbon-based motors | Heavy metals (Pb2+), nitroaromatic explosives, dyes | Adsorption of active carbon | H2O2 | [99] |
Zero-valent-iron/platinum (ZVI/Pt) | Methylene blue | Fenton reaction | H2O2 | [100] |
CoNi@Pt nanorods | 4-nitrophenol, Methylene Blue, and Rhodoamine B | Degradation | Borohydride | [82] |
Pd-Ti/Fe/Cr tubular microjets | 4-nitrophenol (4-NP) | 4-nitrophenol (4-NP) | Borohydride | [101] |
Au NPs/TiO2/Pt nanomotor | super organic mixture | Photocatalytic Degradation | H2O2 | [102] |
Polystyrene–Zn–Fe coreshell Microparticles | Rhodamine B | Fenton reaction | H2O2 | [103] |
TiO2/Au/Mg microspheres | Mineralization of the highly persistent organophosphate nerve agents, bis (4-nitrophenyl) phosphate (b-NPP) and methyl paraoxon (MP) | Photocatalytic degradation | - | [104] |
Biotin-functionalized Janus silica Micromotor | Rhodamine B | Charge adsorption | H2O2 | [105] |
Fe0 Janus nanomotors | Azo dyes | Fenton reaction | Citric acid | [106] |
CoNi-Bi2O3/BiOCl-based hybrid Microrobots | Rhodamine B | Photocatalytic degradation | UV light | [107] |
DNA-functionalized Au/Pt Microtubes | Hg2+ | Adsorption | H2O2 | [108] |
GOx-Ni/Pt | Pb2+ | Adsorption | H2O2 | [109] |
3D printed motors (TSM) | Oil droplets | Adsorption | - | [110] |
Alkanethiols-coated Au/Ni/PEDOT/Pt microsubmarine | Oil droplets | hydrophobicity upon the oil-nanomotor interaction | H2O2 | [111] |
Different Type of Nanomembranes | Advantage of Nanomembrane | Disadvantages of Nanomembrane | Application | Reference |
---|---|---|---|---|
Nanofiber membranes | Excellent porosity, tailor-made, bactericidal, good permeate efficiency, | Pore blocking, conceivably discharge of nanofibers | Ultrafiltration, prefiltration, filter cartridge, water handling, separate filtration devices | [144] |
Nanocomposite membranes | High hydrophilicity, better water permeability, high fouling resistance, good thermal and mechanical stability | Resistant substance substantial required when oxidizing nanomaterial, used to discharge nanoparticles | Entirely dependent on composites | [145] |
Aquaporin-based membranes | Improved ionic selectivity and better permeability | Poor mechanical stability | Less pressure desalination | [146] |
Self-assembling membranes | Homogeneous nanopores membranes | Laboratory scale availability only | Ultrafiltration | [147] |
Nanofiltration membranes | Charge-based repulsion, comparative less pressure, better selectivity | Membrane blocking | Colour, Reduction of hardness, odour | [148] |
Different Nanosorbents | Treatment Function | References |
---|---|---|
Carbon-based nanosorbents | Nickel ions present in water | [162] |
Graphite Oxide | Removal of dyes | [163] |
Regenerable polymeric Nano sorbents | Organic pollutants, inorganic contaminants of wastewaters | [164] |
Nanoclay | Hydrocarbons, Dyes | [165] |
Nano-metal oxides | Different Heavy metals | [166] |
Nano-Aerogels | To remove the uranium fromdrinking water | [167] |
Nano-iron oxides | To eliminate the hormones andtoxic pharmaceuticals materialfrom water | [168] |
Polymer Fibers | To remove the arsenic and other toxic metals | [169] |
Nanomaterials | Observations | References |
---|---|---|
Gold nanorods doped poly(styrenesulfonate) (PSS) composite | Non-toxic | [177] |
TiO2, Al2O3/Carbon black Composite | More toxic at micron particle sized | [177] |
Hexadecylcetyltrimethylammoni um bromide (CTAB) doped Au nano rode composite | High toxic at certain Concentration | [178] |
Fe2O3 and carbon nanotubes Composite | It showed toxic effects and damage DNA even at lowest concentration | [179] |
Carbon, metal, Al2O3 composite | Concentration- and time-dependent. | [180] |
CdSe Quantum dots doped with polyvinylcarbazole composite | Acute toxicity observed | [181] |
Single and Multi-walled carbon Nanotubes | Toxicity increases when concentration rises beyond 15 µg/cm. | [182] |
Au/Carbon composite | Non-toxic at lower range. | [183] |
Ag/Carbon composite | Time- and dose dependent but toxic | [179] |
Nanoparticles (NPs) | Target Analyte | Treatment Mechanism | Limitation | Positive Aspect |
---|---|---|---|---|
TiO2 | Organic Pollutants | Photocatalysis | Higher operation cost Tough to recovery, sludge production | toxic less, Water insolubility, photostability |
Fe | Heavy metals, anions, organic pollutants | Reduction, adsorption | Tough to recovery, sludge Production, difficult sludge disposal, Health risk | In situ water remediation, Less cost, harmless to handle |
Bimetallic NPs | Dichlorination | Reduction, adsorption | Tough to recovery, sludge Production | Higher reactivity |
Nanofiltration and nanomembranes | Organic and inorganic substances | Nanofiltration | High cost, membrane Fouling | Low pressure |
Magnetite NPs | Heavy metals, organic Compounds | Adsorption | Outside magnetically field needed for Separation | Easy separation, no sludge production |
Metal-sorbing vesicles | Heavy metals | Adsorption | Re-use option, higher selective uptake profile, better metal affinity | Difficult to maintain stability |
Micelles | Organic pollutants | Adsorption | In situ treatment, excellent affinity for hydrophobic | Costly |
Dendrimers | Heavy metals, organic Pollutants | Encapsulation | Easy separation, renewable, high binding no sludge production, | Costly |
Nanotube | Heavy metals, anions, organic pollutants | Adsorption | Dealing with pollution from water, Good mechanical properties, exclusive Electrical properties, Good chemical stability | High cost, lower adsorption process, Tough to recovery, sludge production, Dangerous Health risk |
Nanoclay | Heavy metals, anions, organic pollutants | Adsorption | Lower cost, Exclusive structures, long stability, recycle, Higher sorption capacity, Informal recovery, better surface and pore volume | Sludge production |
Nanophotocatalyst | Target Analyte | Initial Concentration of Pollutant | Remediation Efficiency | Doses of Nanophotocatalyst | References |
---|---|---|---|---|---|
TiO2 | Nitrobenzene | 50 mg/L | 100 | 0.1M | [185] |
TiO2 | Methyl orange | 30 mg/L | 100 | 3 g/L | [185] |
TiO2 | Rhodamine 6G | 125 mmol/L | 90 | 0.1%(w/w) | [185] |
TiO2 | Parathion | 50 mg/L | 70 | 1000 mg/L | [198] |
TiO2 | Benzene | 45 mg/L | 72 | 5 g | [199] |
TiO2 | Phenol | - | 100 | 1.8 g/L | [185] |
TiO2 | Rhodamine B | 1.0 × 10−5 M | 97 | 50 mg/50ml | [185] |
TiO2 | Toluene | 45 mg/L | 71 | 5 g | [185] |
TiO2 | Basic dye | 20 mg/L | 80 | 1.22 g/L | [200] |
TiO2 | 4-chlorophenol | 1.0 × 10−5 M | 99 | 25 mg/100ml | [201] |
TiO2 | Procion Red MX-5B | 10 mg/L | 98 | (2.0mg) TiO2 (30%) | [202] |
Nanophotocatalyst | Target Analyte | Doping Agent | Remediation Efficiency | Source of Light | References |
---|---|---|---|---|---|
TiO2 | Glyphosate | Mn | 80 | Visible | [134] |
TiO2 | Methylene Blue | Mn | 75 | Visible | [33] |
TiO2 | Methylene Orange | Cu | 100 | Visible | [203] |
TiO2 | Methylene Blue | S, I | 90 | Visible | [204] |
TiO2 | Formaldehyde | N, S | 65 | Sunlight | [204] |
TiO2 | Ramazol Brilliant Blue | La | 72 | Visible | [204] |
TiO2 | Gentian violet | Mn | 84 | Visible | [194] |
TiO2 | Acid Red 88 | Mo | 77 | Visible | [194] |
TiO2 | Rhodamine B | P | 93 | Sunlight | [205] |
TiO2 | Methylene Blue | Fe | 72 | UV | [205] |
TiO2 | Methylene Orange | Fe | 99 | UV | [205] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M.N. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water 2020, 12, 495. https://doi.org/10.3390/w12020495
Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water. 2020; 12(2):495. https://doi.org/10.3390/w12020495
Chicago/Turabian StyleYaqoob, Asim Ali, Tabassum Parveen, Khalid Umar, and Mohamad Nasir Mohamad Ibrahim. 2020. "Role of Nanomaterials in the Treatment of Wastewater: A Review" Water 12, no. 2: 495. https://doi.org/10.3390/w12020495
APA StyleYaqoob, A. A., Parveen, T., Umar, K., & Mohamad Ibrahim, M. N. (2020). Role of Nanomaterials in the Treatment of Wastewater: A Review. Water, 12(2), 495. https://doi.org/10.3390/w12020495