Parameterization of the Surface Energy Balance of a Shallow Water Table Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Setting of Veenkampen Flux Site
2.2. Field Measurements
2.3. Methods
3. Results
3.1. Energy Balance Closure Check
3.2. Diurnal Variability of Surface Albedo
3.3. Evaporative Fraction
3.4. Evapotranspiration Flux
4. Discussion
4.1. Limitation of This Approach
4.2. How to Handle under Cloudy Conditions
5. Conclusions
- (1)
- The SEB closure rate ranging between 0.86 and 0.93 for warm times (March to October), and between 0.59 and 0.77 for cold times (November to February the following year);
- (2)
- The surface albedo reaches minimum near noon, while the afternoon and morning albedo for the same SZA can differ by up to 0.04. This diurnal variation can be simulated well by the parameterization model proposed by Dickinson;
- (3)
- The EF is variable during the daytime, and Hoedjes parameterization approximates the observed EF diurnal variation in a better way than SEBAL EF parameterization under clear sky conditions. There is not a strong relationship between the instantaneous EF at 1030 local time and the daily average EF, as the coefficient of determination R2 is about 0.6 for all days. The seasonal progression of daily EF shows that it is gradual in warm times and fluctuates dramatically in cold times between and daily as expected;
- (4)
- The conventional constant EF and albedo method provided an acceptable estimation of the daily scale ET with an underestimation of about 6–8% for the shallow water table grassland and the parameterization of diurnal correction shows little improvement in both the bias and RMSE. The progression of daily ET shows a seasonal cycle, which follows the variation of net radiation flux.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bastiaanssen, W.G.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Niaghi, A.R.; Jia, X.; Scherer, T.; Steele, D. Measurement of Unirrigated Turfgrass Evapotranspiration Rate in the Red River Valley. Vadose Zone J. 2019, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fidantemiz, Y.F.; Jia, X.; Daigh, A.L.; Hatterman-Valenti, H.; Steele, D.D.; Niaghi, A.R.; Simsek, H. Effect of water table depth on soybean water use, growth, and yield parameters. Water 2019, 11, 931. [Google Scholar] [CrossRef] [Green Version]
- Rashid Niaghi, A.; Jia, X. New Approach to Improve the Soil Water Balance Method for Evapotranspiration Estimation. Water 2019, 11, 2478. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martens, B.; Dolman, A.J.; Fisher, J.B. The WACMOS-ET project-Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M.; Anderson, S. Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 3897–3925. [Google Scholar] [CrossRef]
- Niaghi, A.R.; Jia, X. Determination of grass evapotranspiration rates and crop coefficients using eddy covariance method in eastern North Dakota. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; pp. 468–483. [Google Scholar]
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Jackson, R.D.; Hatfield, J.L.; Reginato, R.J.; Idso, S.B.; Pinter, P.J., Jr. Estimation of daily evapotranspiration from one time-of-day measurements. Agric. Water Manag. 1983, 7, 351–362. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Gurney, R.J.; Hsu, A.Y.; Ormsby, J.P. FIFE: The variation in energy partition at surface flux sites. IAHS Publ. 1989, 186, 67–74. [Google Scholar]
- Tasumi, M.; Allen, R.G.; Trezza, R.; Wright, J.L. Satellite-based energy balance to assess within-population variance of crop coefficient curves. J. Irrig. Drain Eng. 2005, 131, 94–109. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Ryu, Y.; Baldocchi, D.D.; Black, T.A.; Detto, M.; Law, B.E.; Leuning, R.; Miyata, A.; Reichstein, M.; Vargas, R.; Ammann, C. On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums. Agric. Forest Meteorol. 2012, 152, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Crago, R.D. Conservation and variability of the evaporative fraction during the daytime. J. Hydrol. 1996, 180, 173–194. [Google Scholar] [CrossRef]
- Van Niel, T.G.; McVicar, T.R.; Roderick, M.L.; van Dijk, A.I.J.M.; Beringer, J.; Hutley, L.B.; van Gorsel, E. Upscaling latent heat flux for thermal remote sensing studies: Comparison of alternative approaches and correction of bias. J. Hydrol. 2012, 468, 35–46. [Google Scholar] [CrossRef]
- Peng, J.; Borsche, M.; Liu, Y.; Loew, A. How representative are instantaneous evaporative fraction measurements for daytime fluxes? Hydrol. Earth Syst. Sci. 2013, 17, 3913–3919. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, W10419. [Google Scholar] [CrossRef]
- Grant, I.F.; Prata, A.J.; Cechet, R.P. The Impact of the Diurnal Variation of Albedo on the Remote Sensing of the Daily Mean Albedo of Grassland. J. Appl. Meteorol. 2000, 39, 231–244. [Google Scholar] [CrossRef]
- Biosciences, L. EddyPro Software Instruction Manual; LI-COR Inc.: Lincoln, NE, USA, 2017. [Google Scholar]
- Foken, T.; Göockede, M.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Post-Field Data Quality Control; Springer: Berlin/Heidelberg, Germany, 2004; pp. 181–208. [Google Scholar]
- Jacobs, A.F.; Heusinkveld, B.G.; Holtslag, A.A. Carbon dioxide and water vapour flux densities over a grassland area in the Netherlands. Int. J. Climatol. 2003, 23, 1663–1675. [Google Scholar] [CrossRef]
- Schuepp, P.H.; Leclerc, M.Y.; MacPherson, J.I.; Desjardins, R.L. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound Lay Meteorol. 1990, 50, 355–373. [Google Scholar] [CrossRef]
- Jacobs, A.F.G.; Heusinkveld, B.G.; Holtslag, A.A.M. Towards Closing the Surface Energy Budget of a Mid-latitude Grassland. Bound Lay Meteorol. 2008, 126, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. Forest Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E. Land Surface Processes and Climate—Surface Albedos and Energy Balance. In Advances in Geophysics; Saltzman, B., Ed.; Academic Press Inc.: New York, NY, USA, 1983; Volume 25, pp. 305–353. [Google Scholar]
- Hong, S.H.; Hendrickx, J.M.H.; Kleissl, J.; Allen, R.G.; Bastiaanssen, W.G.M.; Scott, R.L.; Steinwand, A.L. Evaluation of an extreme-condition-inverse calibration remote sensing model for mapping energy balance fluxes in arid riparian areas. Hydrol. Earth Syst. Sci. Discuss. 2014, 12, 13479–13539. [Google Scholar] [CrossRef] [Green Version]
- Hoedjes, J.; Chehbouni, A.; Jacob, F.; Ezzahar, J.; Boulet, G. Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco. J. Hydrol. 2008, 354, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Foken, T.; Wimmer, F.; Mauder, M.; Thomas, C.; Liebethal, C. Some aspects of the energy balance closure problem. Atmos. Chem. Phys. 2006, 6, 4395–4402. [Google Scholar] [CrossRef] [Green Version]
- Kimes, D.S.; Sellers, P.J.; Newcomb, W.W. Hemispherical Reflectance Variations of Vegetation Canopies and Implications for Global and Regional Energy Budget Studies. J. Clim. Appl. Meteorol. 1987, 26, 959–972. [Google Scholar] [CrossRef] [Green Version]
- Briegleb, B.P.; Minnis, P.; Ramanathan, V.; Harrison, E. Comparison of Regional Clear-Sky Albedos Inferred from Satellite Observations and Model Computations. J. Clim. Appl. Meteorol. 1986, 25, 214–226. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.; Sun, X. Temporal upscaling of instantaneous evapotranspiration: An intercomparison of four methods using eddy covariance measurements and MODIS data. Remote Sens. Environ. 2013, 138, 102–118. [Google Scholar] [CrossRef]
- Gentine, P.; Entekhabi, D.; Chehbouni, A.; Boulet, G.; Duchemin, B. Analysis of evaporative fraction diurnal behaviour. Agric. Forest Meteorol. 2007, 143, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Mayor, S.; Smith, W.L.; Young, D.F. Asymmetry in the diurnal variation of surface albedo. IEEE Trans. Geosci. Remote 1997, 35, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Masek, J.G.; Schwaller, M.R.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
Instruments | Measurements |
---|---|
3-D sonic anemometer | turbulent fluctuations of horizontal and vertical wind |
IRGA | turbulent fluxes of H2O and CO2 mass |
Pt-100 thermometer | air temperature at 0.10 m |
soil temperatures under grass at 0.05, 0.10, 0.20, 0.50, 1.0 and 1.5 m; and under bare soil at 0.05, 0.10, 0.20 and 0.50 m | |
Kipp & Zonen | shortwave radiation fluxes, at a height of 1.5 m. |
longwave radiation fluxes | |
sunshine duration | |
Time Domain Reflectrometry (TDR) system | soil moisture content at 0.0625, 0.125, 0.25 and 0.50 m |
heat plate (TNO, WS 31-Cp) | soil heat flux at 0.06 m |
Assumption | Bias | RMSE | R2 |
---|---|---|---|
Obs_VS_Constant | 0.06 | 0.19 | 98.86 |
Obs_VS_Fixed d | −2.19 | 0.84 | 79.81 |
Obs_VS_Fitted d | −0.28 | 0.15 | 99.23 |
Obs_VS_Dickinson | 0.02 | 0.016 | 99.99 |
Method | Daily Mean (MJ m−2 day−1) | without Diurnal Correction (Constant EF and Albedo) | with Diurnal Correction | ||
---|---|---|---|---|---|
Bias | RMSE | Bias | RMSE | ||
EC | 5.10 | −0.41 | 0.71 | 0.26 | 0.62 |
RE | 5.59 | −0.34 | 0.89 | −0.11 | 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Q.; Cheng, C.; Qin, P. Parameterization of the Surface Energy Balance of a Shallow Water Table Grassland. Water 2020, 12, 523. https://doi.org/10.3390/w12020523
Tu Q, Cheng C, Qin P. Parameterization of the Surface Energy Balance of a Shallow Water Table Grassland. Water. 2020; 12(2):523. https://doi.org/10.3390/w12020523
Chicago/Turabian StyleTu, Qianguang, Chunmei Cheng, and Peng Qin. 2020. "Parameterization of the Surface Energy Balance of a Shallow Water Table Grassland" Water 12, no. 2: 523. https://doi.org/10.3390/w12020523
APA StyleTu, Q., Cheng, C., & Qin, P. (2020). Parameterization of the Surface Energy Balance of a Shallow Water Table Grassland. Water, 12(2), 523. https://doi.org/10.3390/w12020523