Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterizationof Study Site
2.2. Climatic Data
2.3. Experimental Campaign to Determine WaterDischarge Using ADCP: Santana-CSA Channel and North Amazon River Channel-CNM
2.4. Hydrodynamic Simulation Process Development—Water Residence Time (Rt)
2.4.1. Computational Mesh
2.4.2. Model Calibration and Evaluation Process for the Water Residence Time Analysis (Rt)
2.5. Statistical Analysis
3. Results
3.1. Overall Results Recorded for the Experimental Data: Santana and North-Macapá Channels
3.2. Statistical Analysis and Model’s Response to Tidal Predictions
3.3. Hydrodynamic Behavior Analysis: Experimental (ADCP) and Simulated (SiBaHiA)
3.4. Water Residence Time (Rt) Simulated with the SisBaHia
4. Discussions
5. Conclusions
- The simulated scenarios have confirmed the hypothesis that Rt presents values within a relatively restrict interval in the assessed period, between 14 days ≤ Rt ≤ 22 days. Therefore, time variations in water level predicted in the hydrodynamic model of the SisBaHiA software were adequate and satisfactorily calibrated. So, it was possible estimating variations in the Rt parameter in at least three seasonal water scenarios—Rt values were higher at the rainy period.
- A second hypothesis was also confirmed. There are Rt spatial variations even in stretches representative of the computer domain. These variations are more homogeneous in the Santana Channel (CSA), and this outcome suggests that the channel is more regular geomorphology (CSA has lower aspect ratio (width/depth) than CNM). It seems to be a determining factor for such hydrodynamic behavior in the channel. And this factor tends to be more homogeneous in this channel (CSA) than in the North Channel (CNM), since the latter it is wider and has more complex geometries.
- Thus, Rt at the rainy and transition periods was more heterogeneous than in the dry period. Besides, it tends to be more heterogeneous on the left side of CNM. This feature made Rt less favorable for self-depuration phenomena in environments more impacted, for instance, by the urbanized systems of Macapá and Santana than the right side of the channels, which did not show any environmental impact. This outcome results from morphological features of these channels (shallower waters on the banks than in the center of the channel), which tend to disfavor the potential dilution and self-depuration of waste disposed in natura close to Macapá and Santana’s coast.
- In statistical terms, the observational behavior shown by tidal variations was correlated to variations in outcomes predicted in the SisBaHiA in 2016, 2017 and 2018. Thus, there was consistence between observed and simulated results (r > 0.95), which indicates very good reliability level of the hydrodynamic model to predict variations in 2019 tidal ranges (CDSA).
- Water discharge measurements and bathymetric profile in the defined sections aimed at accurately quantifying variations in the channels’ velocity intensity, whose maximal values reached up to 2 m/s in the rainy period, mainly during the ebb tide. The correlations between the experimental water discharge behavior and results presented by model’s outputs (18 March 2019 and 19 March 2019) were really quite satisfactory (r > 0.95)—it is an unprecedented contribution to studies on the estuary of lower Amazon River.
- The herein presented methodology can be extrapolated to other similar studies, including other coastal areas of the Amazon estuary, with emphasis on water bodies’ self-depuration ability, on the dilution capacity of passive agents in water and, consequently, on the behavioral analysis of the biogeochemical dynamics of quality of water parameters and the overall pollutants’ dispersion in water.
Author Contributions
Funding
Conflicts of Interest
References
- Chong, L.S.; Berelson, W.M.; Hammond, D.E.; Fleisher, M.Q.; Anderson, R.F.; Rollins, N.E.; Lund, S. Biogenic sedimentation and geochemical properties of deep-sea sediments of the Demerara Slope/Abyssal Plain: Influence of the Amazon River Plume. Mar. Geol. 2016, 379, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.M.; El-Robrini, M.; Costa, W.J.P. Panorama da erosão costeira—Amapá. In Panorama da Erosão Costeira no Brasil; Muehe, D., Ed.; Ministério do Meio Ambiente: Macapá, Brasil, 2018; p. 761. [Google Scholar]
- Hoitink, A.J.F.; Jay, D.A. Tidal river dynamics: Implications for deltas. Rev. Geophys. 2016, 54, 240–272. [Google Scholar] [CrossRef]
- Molinas, E.; Vinzon, S.B.; Vilela, C.; Gallo, M.N. Structure and position of the bottom salinity front in the Amazon Estuary. Ocean Dyn. 2014, 64, 1583–1599. [Google Scholar] [CrossRef]
- Sassi, M.G.; Hoitink, A.J.F. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river. J. Geophys. Res. Oceans 2013, 118, 4139–4151. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, J.; Lin, B.; Huang, G. Seasonal hydrodynamic interactions between tidal waves and river flows in the Yangtze Estuary. J. Mar. Syst. 2018, 186, 17–28. [Google Scholar] [CrossRef]
- Zhang, M.; Townend, I.; Zhou, Y.X.; Cai, H.Y. Seasonal variation of river and tide energy in the Yangtze estuary, China. Earth Surf. Process.Landforms 2016, 41, 98–116. [Google Scholar] [CrossRef]
- Guo, L.; Van der Wegen, M.; Roelvink, J.A.; He, Q. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics. J. Geophys.Res. Earth Surf. 2014, 119, 2315–2334. [Google Scholar] [CrossRef] [Green Version]
- Bolla Pittaluga, M.; Tambroni, N.; Canestrelli, A.; Slingerland, R.; Lanzoni, S.; Seminara, G. Where river and tide meet: The morphodynamic equilibrium of alluvial estuaries. J. Geophys. Res. Earth Surf. 2015, 120, 75–94. [Google Scholar] [CrossRef]
- Valerio, A.M.; Kampel, M.; Vantrepotte, V.; Ward, N.D.; Sawakuchi, H.O.; Less, D.F.S.; Neu, V.; Cunha, A.; Richey, J. Using CDOM optical properties for estimating DOC concentrations and pCO in the Lower Amazon River. Opt. Express 2018, 26, 657–677. [Google Scholar] [CrossRef] [Green Version]
- Less, D.F.S.; Cunha, A.C.; Sawakuchi, H.O.; Neu, V.; Valério, A.M.; Ward, N.D.; Brito, D.C.; Diniz, J.E.M.; Gagne-Maynard, W.; Abreu, C.M.; et al. The Role Of Hydrodynamic And Biogeochemistry On Co2 Flux And pCO2At The Amazon River Mouth. Biogeosciences 2018, 1, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Braunschweig, F.; Martins, F.; Neves, R.; Pina, P.; Santos, M.; Saraiva, S. A importância dos Processos Físicos no controlo da Eutrofização em Estuários. INAG-Instituto da Água 2003. [Google Scholar]
- Ward, N.D.; Bianchi, T.S.; Sawakuchi, H.O.; Gagne-Maynard, W.; Cunha, A.C.; Brito, D.C.; Neu, V.; de Matos, V.A.; Da Silva, R.K.; Alex, V.; et al. The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River. J. Geophys. Res. Biogeosci. 2016, 121, 1522–1539. [Google Scholar] [CrossRef]
- Sawakuchi, H.O.; Neu, V.; Ward, N.D.; Barros, M.L.C.; Valerio, A.M.; Gagne-Maynard, W.; Cunha, A.C.; Less, D.F.S.; Diniz, J.E.M.; Brito, D.C.; et al. Carbon Dioxide Emissions Along The Lower Amazon River. Front. Mar. Sci. 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gagne-Maynard, W.; Ward, N.D.; Keil, R.G.; Sawakuchi, H.O.; Cunha, A.C.; Neu, V.; Brito, D.C.; Less, D.F.S.; Diniz, J.E.; Matos, A.; et al. Evaluation Of Primary Production In The Lower Amazon River Based On A Dissolved Oxygen Stable Isotopic Mass Balance. Front. Mar. Sci. 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ward, N.D.; Sawakuchi, H.O.; Neu, V.; Less, D.F.S.; Valerio, A.M.; Cunha, A.C.; Kampel, M.; Bianchi, T.S.; Krusche, A.V.; Richey, J.E.; et al. Velocity-Amplified Microbial Respiration Rates In The Lower Amazon River. Limnol. Oceanogr. Lett. 2018, 3, 265–274. [Google Scholar] [CrossRef]
- Ward, N.D.; Krusche, A.V.; Sawakuchi, H.O.; Brito, D.C.; Cunha, A.C.; Moura, J.M.S.; da Silva, R.; Yager, P.L.; Keil, R.G.; Richey, J.E. The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean. Mar. Chem 2015, 177, 244–256. [Google Scholar] [CrossRef]
- de Oliveira, E.D.C.; Da Cunha, A.C.; Da Silva, N.B.; Castelo-Branco, R.; Morais, J.; Schneider, M.P.C.; Faustino, S.M.M.; Ramos, V.; Vasconcelos, V. Morphological And Molecular Characterization Of Cyanobacterial Isolates From The Mouth Of The Amazon River. Phytotaxa 2019, 387, 269–288. [Google Scholar] [CrossRef] [Green Version]
- Eom, J.; Seo, K.W.; Ryu, D. Estimation of Amazon River discharge based on EOF analysis of GRACE gravity data. Remote Sens. Environ. 2017, 191, 55–66. [Google Scholar] [CrossRef]
- Cunha, A.C.; Brito, D.C.; BrasilJr, A.C.; Pinheiro, L.A.R.; Cunha, H.F.A.; Krusche, A.V. Challenges and solutions for hydrodynamic and water quality in rivers in the Amazon Basin. In Hydrodinamics: Natural Water Bodies, 1st ed.; IntechOpen: Rijeka, Croatia, 2012; Volume 3, pp. 67–88. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, L.A.R.; Cunha, A.C.; Cunha, H.F.A.; Souza, L.R.; Saraiva, J.B.; Brito, D.C.; Brasil, A.C.P., Jr. Aplicação de Simulação computacional à dispersão de poluentes no baixo rio Amazonas: Potenciais riscos à captação de água na orla de Macapá-AP. Amazônia(BancodaAmazônia) 2008, 4, 27–44. [Google Scholar]
- DosSantos, E.S.; Lopes, P.P.P.; Nascimento, O.O.; Pereira, H.H.S.; Collin, R.; Sternberg, L.S.L.; Cunha, A.C. The impact of channel capture on estuarine hydro-morphodynamics and water quality in the Amazon delta. Sci. Total Environ. 2018, 624, 887–899. [Google Scholar] [CrossRef]
- DaCunha, A.C.; Sternberg, L.S.L. Using stable isotopes 18O and 2H of lake water and biogeochemical analysis to identify factors affecting water quality in four estuarine Amazonian shallow lakes. Hydrol. Process. 2018, 32, 1188–1201. [Google Scholar] [CrossRef]
- Wan, Y.; Qiu, C.; Doering, P.; Ashton, M.; Sun, D.; Coley, T. Modeling residence time with a three-dimensional hydrodynamic model: Linkage with chlorophyll a in a subtropical estuary. Ecol. Model. 2013, 268, 93–102. [Google Scholar] [CrossRef]
- Rueda, F.; Moreno-Ostos, E.; Armengol, J. Theresidencetimeofriverwaterinreservoirs. Ecol. Model. 2006, 191, 260–274. [Google Scholar] [CrossRef]
- Qi, H.; Lu, J.; Chen, X.; Sauvage, S.; Sanchez-Pérez, J.M. Water age prediction and its potential impacts on water quality using a hydrodynamic model for Poyang Lake, China. Environ. Sci. Pollut. Res. 2016, 23, 13327–13341. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y.; Sisson, M. Development of the hydrodynamic model for long-term simulation of water quality processes of the tidal James River, Virginia. J. Mar. Sci. Eng. 2016, 4, 82. [Google Scholar] [CrossRef] [Green Version]
- Bacher, C.; Filgueira, R.; Guyondet, T. Probabilistic approach of water residence time and connectivity using Markov chains with application to tidal embayments. J. Mar. Syst. 2016, 153, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Shen, J. Water residence time in Chesapeake Bay for 1980–2012. J. Mar. Syst. 2016, 164, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Kenov, I.A.; Garcia, A.C.; Neves, R. Residence time of water in the Mondego Estuary (Portugal). Estuar. Coast. Shelf Sci. 2012, 106, 13–22. [Google Scholar] [CrossRef]
- Webb, B.M.; Marr, C. Spatial Variability of Hydrodynamic Timescales in a Broadand Shallow Estuary: MobileBay, Alabama. J. Coast. Res. 2016, 322, 1374–1388. [Google Scholar] [CrossRef]
- Banks, V.J.; Palumbo-Roe, B.; Russell, C.E. Hyporheic Zone; IntechOpen Limited: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.; Wu, L.; Gomez-Velez, J.D.; Lewandowski, J.; Hannah, D.M.; Krause, S. Dynamic Hyporheic Zones: Exploring the Role of Peak-Flow Events on Bedform-induced Hyporheic Exchange. Water Resour. Res. 2018, 55, 218–235. [Google Scholar] [CrossRef]
- Peralta-Maraver, I.; Reiss, J.; Robertson, A.L. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci. Total Environ. 2018, 610–611, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, E.D.C.; Castelo-Branco, R.; Silva, L.; Silva, N.; Azevedo, J.; Vasconcelos, V.; Cunha, A. First Detection of Microcystin-LR in the Amazon River at the Drinking Water Treatment Plant of the Municipality of Macapá, Brazil. Toxins 2019, 11, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.D.; Vinzon, S.B.; de Oliveira, F.A.M. Navigation at the Amazon River Mouth: Sand Bank Migration and Depth Surveying. In Proceedings of the 11th Triennial International Conference on Ports, San Diego, CA, USA, 25–28 March 2007. [Google Scholar] [CrossRef]
- Gallo, M.N.; Vinzon, S.B. Estudo numérico do escoamento em planícies de marés do channel Norte (estuário do rio Amazonas). Ribagua 2015, 2, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Oberg, N.; Morales, V.M.; Quijano, J.C.; Landry, B.J.; Garcia, M.H. Integrated urban hydrologic and hydraulic modelling in Chicago, Illinois. Environ. Model. Softw. 2016, 77, 63–70. [Google Scholar] [CrossRef]
- Rosman, P.C.C. Referência Técnica Do Sisbahia-Sistema Base De Hidrodinâmica Ambiental, Programa COPPE; Engenharia Oceânica: Área De Engenharia Costeira E Oceanográfica, Rio De Janeiro, Brasil, 2018. [Google Scholar]
- Da Cunha, A.C.; Mustin, K.; Dos Santos, E.S.; Dos Santos, É.W.G.; Guedes, M.C.; Cunha, H.F.A.; Rosman, P.C.C.; Sternberg, L.L. Hydrodynamics and Seed Dispersal in The Lower Amazon. Freshw. Biol. 2017, 62, 1721–1729. [Google Scholar] [CrossRef]
- Perdas e Serviços Ambientais do Recurso água para uso Doméstico. Available online: http://ppe.ipea.gov.br/index.php/ppe/article/viewFile/810/749 (accessed on 10 April 2019).
- IBGE Censo 2010. Available online: www.censo2010.ibge.gov.br. (accessed on 20 December 2019).
- Cunha, A.C. Emissários subfluviais Como Alternativa à Concepção do Sistema de Esgotamento Sanitário de Macapá e Santana. Projeto de Pesquisa CNPq – Produtividade em Pesquisa (PQ-2); Unifap: Macapá, Brazil, 2018; p. 50, Process Number: 309684/2018-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Grant Number: 303715/2015-4 and 475614/2012-7Th. [Google Scholar]
- Cunha, A.; Cunha, H.F.A.; Júnior, A.C.P.B.; Daniel, L.A.; Schulz, H.E. Qualidade microbiológica da água em rios de áreas urbanas e periurbanas no baixo Amazonas: O caso do Amapá. Eng. Sanit. Ambient. 2004, 9, 322–328. [Google Scholar] [CrossRef]
- Pereira, N.N.; Botter, R.C.; Folena, R.D.; Pereira, J.P.F.N.; Cunha, A.C. Ballast water: A threat to the Amazon Basin. Mar. Pollut. Bull 2014, 84, 330–338. [Google Scholar] [CrossRef]
- Miranda, L.B.; Castro, B.M.; Kjierfve, B. Princípio de Oceanografia de Estuários; Editora Universidade de São Paulo: Sao Paulo, Brazil, 2002. [Google Scholar]
- Ward, N.D.; Keil, R.G.; Medeiros, P.M.; Brito, D.C.; Cunha, A.C.; Dittmar, T.; Yager, P.L.; Krusche, A.V.; Richey, J.E. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 2013, 6, 530–533. [Google Scholar] [CrossRef]
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, R., Eds.; Gerbrüder Borntraeger: Berlin, Germany, 1936; Volume 1, p. 44. [Google Scholar]
- Limberger, L.; Silva, M.E.S. Precipitação Na Bacia Amazônica E Sua Associação à Variabilidade Da TemperaturaDa Superfície Dos Oceanos Pacífico E Atlântico:Uma Revisão. GeouspEspaço E Tempo 2016, 20, 657–675. [Google Scholar] [CrossRef]
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- De Souza, E.B.; Da Silva Ferreira, D.B.; Guimarães, J.T.F.; Dos Santos Franco, V.; De Azevedo, F.T.M.; De Moraes, B.C. Padrões climatológicos e tendências da precipitação nos regimes chuvoso e seco da Amazônia oriental. Rev. Bras. de Climatol. 2017, 21, 81–93. [Google Scholar] [CrossRef]
- Silva, I.O. Distribuição da Vazão Fluvial no Estuário do Rio Amazonas. Master’s Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Cunha, C.d.L.N.; Rosman, P.C.C.; Ferreira, A.P.; Carlos do Nascimento Monteiro, T. Hydrodynamics and water quality models applied to Sepetiba Bay. Cont. Shelf Res. 2006, 26, 1940–1953. [Google Scholar] [CrossRef]
- Barros, M.D.L.C.; Rosman, P.C.C. A study on fish eggs and larvae drifting in the Jirau reservoir, Brazilian Amazon. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 62. [Google Scholar] [CrossRef]
- Silva, M.S. Relatório da Campanha de Medições de vazões Realizadas no Estado do Amapá (Foz do rio Amazonas), período: 04– 16/09/2001; IEPA/GERCO: Macapá, Brazil, 2002. [Google Scholar]
- Ministry of Defense of Brazil. Nautical charts of the Brazilian Navy. Available online: https://www.marinha.mil.br/chm/chm/dados-do-segnav-cartas-nauticas/cartas-nauticas (accessed on 10 July 2019).
- Vilela, C.P.X. Influência da Hidrodinâmica Sobre os Processos de Acumulação de Sedimentos Finos no Estuário do rio Amazonas. Ph.D. Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Beardsley, R.C.; Candela, J.; Limeburner, R.; Geyer, W.R.; Lentz, S.J.; Castro, B.M.; Cacchione, D.; Carneiro, N. The M2 tide on the Amazon Shelf. J. Geophys.Res. 1995, 100, 2283–2319. [Google Scholar] [CrossRef]
- Gallo, M.N. A Influência da Vazão Fluvial Sobre a Propagação da Maré no Estuário do Rio Amazonas. Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2004. [Google Scholar]
- Gallo, M.N.; Vinzon, S.B. Generation of overtides and compound tides in Amazon estuary. Ocean Dyn. 2005, 55, 441–448. [Google Scholar] [CrossRef]
- Fossati, M.; Piedra-Cueva, I. A 3D hydrodynamic numerical model of the Río de la Plata and Montevideo’s coastal zone. Appl. Math. Model. 2013, 37, 1310–1332. [Google Scholar] [CrossRef]
- Hsu, M.H.; Kuo, A.Y.; Kuo, J.T.; Liu, W.C. Procedure to Calibrate and Verify Numerical Models of Estuarine Hydrodynamics. J. Hydraul. Eng. 1999, 125, 166–182. [Google Scholar] [CrossRef]
- Liu, W.C.; Chen, W.B.; Cheng, R.T.; Hsu, M.H. Modelling the impact of wind stress and river discharge on Danshuei River plume. Appl. Math. Model. 2008, 32, 1255–1280. [Google Scholar] [CrossRef]
- Nzualo, T.N.M.; Gallo, M.N.; Vinzon, S.B. Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique). Geomorphology 2018, 308, 107–117. [Google Scholar] [CrossRef]
- Bakken, T.H.; King, T.; Alfredsen, K. Simulation of river water temperatures during various hydropeaking regimes. J. Appl. Water Eng. Res. 2016, 4, 31–43. [Google Scholar] [CrossRef]
- Haddout, S.; Maslouhi, A. Testing Analytical Tidal Propagation models of the One-Dimensional Hydrodynamic Equations in Morocco’s Estuaries. Int. J. River Basin Manag. 2018, 17, 353–366. [Google Scholar] [CrossRef]
- Skhakhfa, I.D.; Ouerdachi, L. Hydrological modelling of wadi Ressoul watershed, Algeria, by HECHMS model. J. Water Land Dev. 2016, 31, 139–147. [Google Scholar] [CrossRef]
- Devkota, J.; Fang, X. Numerical simulation of flow dynamics in a tidal river under various upstream hydrologic conditions. Hydrolog. Sci. J. 2015, 60, 1666–1689. [Google Scholar] [CrossRef]
- Al-Asadi, K.; Duan, J.G. Three-Dimensional Hydrodynamic Simulation of Tidal Flow through a Vegetated Marsh Area. J. Hydraul. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Morozov, E.G. Oceanic Internal Tides: Observations, Analysis and Modeling; Springer International Publishing: Basel, Switzerland, 2018. [Google Scholar] [CrossRef]
- DHN, Marinha do Brasil. Carta de Correntes de Maré—Porto de Santana, 2nd ed.; Diretoria de Hidrografia e Navegação Niterói: Niterói, Brazil, 2009. [Google Scholar]
- Defne, Z.; Ganju, N.K. Quantifying the residence time and flushing characteristics of a shallow, back-barrier estuary: Application of hydrodynamic and particle tracking models. Estuaries Coasts 2015, 38, 1719–1734. [Google Scholar] [CrossRef]
- Baranyi, C.; Hein, T.; Holarek, C.; Keckeis, S.; Schiemer, F. Zooplankton biomass and community structure in a Danube River floodplain system: Effects of hydrology. Freshw. Biol. 2002, 47, 473–482. [Google Scholar] [CrossRef]
- Mari, X.; Rochelle-Newall, E.; Torréton, J.P.; Pringault, O.; Jouon, A.; Migon, C. Water residence time: A regulatory factor of the DOM to POM transfer efficiency. Limnol. Oceanogr. 2007, 52, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Obertegger, U.; Flaim, G.; Braioni, M.G.; Sommaruga, R.; Corradini, F.; Borsato, A. Water residence time as a driving force of zooplankton structure and succession. Aquat. Sci. 2007, 69, 575–583. [Google Scholar] [CrossRef]
- Liu, W.C.; Chen, W.B.; Hsu, M.H. Using a three-dimensional particle-tracking model to estimate the residence time and age of water in a tidal estuary. Comput. Geosci. 2011, 37, 1148–1161. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Chen, X.; Flannery, M.S. Critical Flow for Water Management in a Shallow Tidal River Based on Estuarine Residence Time. Water Res. Manag. 2011, 25, 2367–2385. [Google Scholar] [CrossRef]
- Jones, A.E.; Hodges, B.R.; McClelland, J.W.; Hardison, A.K.; Moffett, K.B. Residence-time-based classification of surface water systems. Water Resour. Res. 2017, 53, 5567–5584. [Google Scholar] [CrossRef]
- Oliveira, A.; Baptista, A.M. Diagnostic modeling of residence times in estuaries. Water Resour. Res. 1997, 33, 1935–1946. [Google Scholar] [CrossRef]
- Beaver, J.R.; Scotese, K.C.; Manis, E.E.; Juul, S.T.J.; Carroll, J.; Renicker, T.R. Variation in water residence time is the primary determinant of phytoplankton and zooplankton composition in a Pacific Northwest reservoir ecosystem (Lower Snake River, USA). River Syst. 2015, 21, 241–255. [Google Scholar] [CrossRef]
- Oviatt, C.; Smith, L.; Krumholz, J.; Coupland, C.; Stoffel, H.; Keller, A.; McManus, M.C.; Reed, L. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary. Estuar. Coast. Shelf Sci. 2017, 199, 25–34. [Google Scholar] [CrossRef]
- Damasceno, M.C.S.; Ribeiro, H.M.C.; Takiyama, L.R.; De Paula, M.T. Avaliação Sazonal Da Qualidade Das Águas Superficiais Do Rio Amazonas Na Orla Da Cidade De Macapá, Amapá, Brasil. Rev. Ambient 2015, 10, 598–613. [Google Scholar] [CrossRef] [Green Version]
- Bukaveckas, P.A.; Isenberg, W.N. Loading, Transformation, and Retention of Nitrogen and Phosphorus in the Tidal Freshwater James River (Virginia). Estuar. Coasts 2013, 36, 1219–1236. [Google Scholar] [CrossRef]
- Roversi, F.; Rosman, P.C.C.; Harari, J. Análise da renovação das águas do Sistema Estuarino de Santos usando modelagem computacional. Rev. Ambient. Água 2016, 11, 566–585. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, C.; Nelson, W.C.; Shi, L.; Xu, F.; Liu, Y.; Yan, A.; Zhong, L.; Thompson, C.; Fredrickson, J.; et al. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. Environ. Sci. Technol. 2017, 51, 4877–4886. [Google Scholar] [CrossRef]
- Gomez-Velez, J.D.; Harvey, J.W.; Cardenas, M.B.; Kiel, B. Denitrification in the Mississippi River network controlled by flow through river bedforms. Nat. Geosci. 2015, 8, 941–945. [Google Scholar] [CrossRef]
- Haddou, K.; Bendaoud, A.; Belaidi, N.; Taleb, A. A large-scale study of hyporheic nitrate dynamics in a semi-arid catchment, the Tafna River, in Northwest Algeria. Environ. Earth Sci. 2018, 77, 1. [Google Scholar] [CrossRef]
- Gomez-Velez, J.D.; Wilson, J.L.; Cardenas, M.B.; Harvey, J.W. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resour. Res. 2017, 53, 8572–8595. [Google Scholar] [CrossRef]
- Rickey, J.E.; Melack, J.M.; Aufdenkampe, A.K.; Ballester, V.M.; Hess, L.L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 2002, 416, 617–620. [Google Scholar] [CrossRef] [PubMed]
Method | ||||
---|---|---|---|---|
Period | Pearson * | Nash-Sutcliffe (NSE) | R2 | d |
March 2017 | 0.99 | 0.97 | 0.97 | 0.99 |
November 2017 | 0.99 | 0.97 | 0.97 | 0.99 |
May 2018 | 0.97 | 0.94 | 0.95 | 0.99 |
August 2018 | 0.99 | 0.97 | 0.98 | 0.99 |
Mean | 0.99 | 0.96 | 0.97 | 0.99 |
Method | ||||
---|---|---|---|---|
Period | Pearson * | Nash-Sutcliffe (NSE) | R2 | d |
March | 0.95 | 0.90 | 0.90 | 0.97 |
May | 0.96 | 0.90 | 0.91 | 0.98 |
August | 0.95 | 0.90 | 0.90 | 0.97 |
November | 0.96 | 0.91 | 0.92 | 0.98 |
Mean | 0.96 | 0.9 | 0.91 | 0.98 |
Method/Parameter | Ebb Flow (m3/s) | Flood Flow (m3/s) | EbbVelocity (m/s) | Flood Velocity (M/S) |
---|---|---|---|---|
Real-ADCP | 22,729 | −13,381 | 0.98 | 0.55 |
Simulated | 22,412 | −12,360 | 1.13 | 0.59 |
Relative Error (%) | 1.4% | 7.6% | 15% | 7% |
Method/Parameter | Ebb Flow (m3/s) | Flood Flow (m3/s) | Ebb Velocity (m/s) | Flood Velocity (m/s) |
---|---|---|---|---|
Real-ADCP | 254,944 | −149,653 | 0.98 | 0.72 |
Simulated | 249,935 | −143,916 | 1.4 | 0.75 |
Difference (%)-Relative Error | 1.96% | 4.02% | 16.7% | 4.17 % |
Month | Ebb Flow (CSA) (m3/s) | Flood Flow (CSA) (m3/s) | Ebb Flow (CNM) (m3/s) | Flood Flow (CNM) (m3/s) |
---|---|---|---|---|
May | 24,013 (17 May) * | −14,555 (17 May) * | 265,230 (18 May) * | −151,340 (18 May) * |
August | 22,951 (2 August) * | −15,763 (30 August) * | 260,814 (2 August) * | −172,362 (30 August) * |
November | 18,785 (30 November) * | −20,206 (26 November) * | 219,363 (25 November) * | −229,326 (26 November) * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. de Abreu, C.H.; Barros, M.d.L.C.; Brito, D.C.; Teixeira, M.R.; Cunha, A.C.d. Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River. Water 2020, 12, 660. https://doi.org/10.3390/w12030660
M. de Abreu CH, Barros MdLC, Brito DC, Teixeira MR, Cunha ACd. Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River. Water. 2020; 12(3):660. https://doi.org/10.3390/w12030660
Chicago/Turabian StyleM. de Abreu, Carlos Henrique, Maria de Lourdes Cavalcanti Barros, Daímio Chaves Brito, Marcelo Rassy Teixeira, and Alan Cavalcanti da Cunha. 2020. "Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River" Water 12, no. 3: 660. https://doi.org/10.3390/w12030660
APA StyleM. de Abreu, C. H., Barros, M. d. L. C., Brito, D. C., Teixeira, M. R., & Cunha, A. C. d. (2020). Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River. Water, 12(3), 660. https://doi.org/10.3390/w12030660