Low Trihalomethane Formation during Managed Aquifer Recharge with Chlorinated Desalinated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Field Experiment
2.3. Monitoring a Full-Scale MAR Event with Desalinated Seawater
2.4. Field Analytical Methods
2.5. Analytical Methods
3. Results
3.1. Influence of Bromide on THM Formation in a Small-Scale Infiltration Event
3.1.1. Infiltration of Chlorinated DSW—Results of a Small-Scale Experiment
3.1.2. Infiltration of Bromide Spiked Chlorinated DSW—Results of a Small-Scale Experiment
3.2. Large-Scale Infiltration Event
4. Discussion
4.1. Environmental Aspects of THM Formation in MAR with Chlorinated Desalinated Seawater
4.2. THM Formation in the Ponding Water
4.3. Decrease in Total THM Concentrations During a Large-Scale MAR Event
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanasaki, N.; Yoshikawa, S.; Kakinuma, K.; Kanae, S. A seawater desalination scheme for global hydrological models. Hydrol. Earth Syst. Sci. 2016, 20, 4143–4157. [Google Scholar] [CrossRef] [Green Version]
- Tal, A. The desalination debate—lessons learned thus far. Environ. Sci. Policy Sustainable Dev. 2011, 53, 34–48. [Google Scholar] [CrossRef]
- Israel Water Authority. Consumption of Potable Water in 2017 (in Hebrew). Available online: http://www.water.gov.il/Hebrew/ProfessionalInfoAndData/Allocation-Consumption-andproduction/20172/shafirim_mavo_2017.pdf (accessed on 3 March 2020).
- Almulla, A.; Hamad, A.; Gadalla, M. Aquifer storage and recovery (ASR): A strategic cost-effective facility to balance water production and demand for Sharjah. Desalination 2005, 174, 193–204. [Google Scholar] [CrossRef]
- Hutchinson, C. Simulation of Aquifer Storage Recovery of Excess Desalinated Seawater, AL AIN Area, Abu Dhabi Emirate; Citeseer: The Pennsylvania State University, State College, PA, USA, 1998. [Google Scholar]
- Al-Katheeri, E. Towards the establishment of water management in Abu Dhabi Emirate. Water Resour. Manag. 2008, 22, 205. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Al-Awadi, E.; AlSenafy, M.; Smith, P. Laboratory investigations of compatibility of the Dammam Formation Aquifer with desalinated freshwater at a pilot recharge site in Kuwait. J. Arid Environ. 1998, 40, 27–42. [Google Scholar] [CrossRef]
- Al-Awadi, E.; Mukhopadhyay, A.; Al-Haddad, A.J. Compatibility of desalinated water with the dammam formation at the northwest shigaya water-well field, Kuwait—A preliminary study. Hydrogeol. J. 1995, 3, 56–73. [Google Scholar] [CrossRef]
- Ganot, Y.; Holtzman, R.; Weisbrod, N.; Nitzan, I.; Katz, Y.; Kurtzman, D. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater. Hydrol. Earth Syst. Sci. 2017, 21. [Google Scholar] [CrossRef] [Green Version]
- Yermiyahu, U.; Tal, A.; Ben-Gal, A.; Bar-Tal, A.; Tarchitzky, J.; Lahav, O. Rethinking desalinated water quality and agriculture. Science 2007, 318, 920–921. [Google Scholar] [CrossRef]
- Ronen-Eliraz, G.; Russak, A.; Nitzan, I.; Guttman, J.; Kurtzman, D. Investigating geochemical aspects of managed aquifer recharge by column experiments with alternating desalinated water and groundwater. Sci. Total Environ. 2017, 574, 1174–1181. [Google Scholar] [CrossRef]
- Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D. Geochemical processes during managed aquifer recharge with desalinated seawater. Water Resour. Res. 2018, 54, 978–994. [Google Scholar] [CrossRef]
- Agus, E.; Voutchkov, N.; Sedlak, D.L. Disinfection by-products and their potential impact on the quality of water produced by desalination systems: A literature review. Desalination 2009, 237, 214–237. [Google Scholar] [CrossRef]
- Kim, D.; Amy, G.L.; Karanfil, T. Disinfection by-product formation during seawater desalination: A review. Water Res. 2015, 81, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Gopal, K.; Tripathy, S.S.; Bersillon, J.L.; Dubey, S.P. Chlorination byproducts, their toxicodynamics and removal from drinking water. J. Hazard. Mater. 2007, 140, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef] [PubMed]
- WHO. Trihalomethanes in Drinking-water Background document for development of WHO Guidelines for Drinking-Water Quality. Geneva World Health Organ. 2005, 5, 8–64. [Google Scholar]
- EU. Decision 2004/248/EC of 10 March 2004. OJ 2004, L 78, 53–55. [Google Scholar]
- Israel Ministry of Health. Public Health Regulations 2013—The Sanitary Quality of Drinking Water and Drinking Water Facilities. Available online: https://www.health.gov.il/LegislationLibrary/Briut47.pdf (accessed on 3 March 2020).
- Ivahnenko, T.; Barbash, J.E. Chloroform in the Hydrologic System—Sources, Transport, Fate, Occurrence, and Effects on Human Health and Aquatic Organisms. US Geological Survey Reston: Reston, VA, USA, 2004. [Google Scholar]
- Carter, J.M.; Moran, M.J.; Zogorski, J.S.; Price, C.V. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water. Environ. Sci. Technol. 2012, 46, 8189–8197. [Google Scholar] [CrossRef]
- Sadiq, R.; Rodriguez, M.J. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review. Sci. Total Environ. 2004, 321, 21–46. [Google Scholar] [CrossRef]
- Melloul, A. Hydrogeological Atlas of Israel’s Coastal plain aquifer. Ministry of Agriculture Water Commission 1988, 8, 35. [Google Scholar]
- Munch, D.J.; Hautman, D.P. Method 551.1: Determination of chlorination disinfection byproducts, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection. In Methods for the Determination of organic compounds in drinking water; NSCEP: Washington DC, USA, 1995. [Google Scholar]
- Richardson, S.D.; Thruston, A.D.; Rav-Acha, C.; Groisman, L.; Popilevsky, I.; Juraev, O.; Glezer, V.; McKague, A.B.; Plewa, M.J.; Wagner, E.D. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environ. Sci. Technol. 2003, 37, 3782–3793. [Google Scholar] [CrossRef]
- Heller-Grossman, L.; Manka, J.; Limoni-Relis, B.; Rebhun, M. Formation and distribution of haloacetic acids, THM and TOX in chlorination of bromide-rich lake water. Water Rese. 1993, 27, 1323–1331. [Google Scholar] [CrossRef]
- Kloppmann, W.; Vengosh, A.; Guerrot, C.; Millot, R.; Pankratov, I. Isotope and ion selectivity in reverse osmosis desalination: Geochemical tracers for man-made freshwater. Environ. Sci. Technol. 2008, 42, 4723–4731. [Google Scholar] [CrossRef] [PubMed]
- EPAU. 2004 ed. of the Drinking Water Standards and Health Advisories; EPA 822-R-04-005; Office of Water: Washington, DC, USA, 2004. [Google Scholar]
- Goldsmith, Y.; Polissar, P.; Ayalon, A.; Bar-Matthews, M.; Demenocal, P.; Broecker, W. The modern and Last Glacial Maximum hydrological cycles of the Eastern Mediterranean and the Levant from a water isotope perspective. Earth Planet. Sci. Lett. 2017, 457, 302–312. [Google Scholar] [CrossRef]
- Pavelic, P.; Dillon, P.J.; Nicholson, B.C. Comparative evaluation of the fate of disinfection byproducts at eight aquifer storage and recovery sites. Environ. Sci. Technol. 2006, 40, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Pavelic, P.; Nicholson, B.C.; Dillon, P.J.; Barry, K.E. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water. J. Contam. Hydrol. 2005, 77, 119–141. [Google Scholar] [CrossRef]
- Liu, D.; Liang, X.; Zhang, W.; Wang, Z.; Ma, T.; Li, F.; Chen, X. Formation and transformation of chloroform during managed aquifer recharge (MAR). J. Environ. Manag. 2018, 219, 304–315. [Google Scholar] [CrossRef]
- Ganot, Y.; Holtzman, R.; Weisbrod, N.; Bernstein, A.; Siebner, H.; Katz, Y.; Kurtzman, D. Managed aquifer recharge with reverse-osmosis desalinated seawater: Modeling the spreading in groundwater using stable water isotopes. Hydrol. Earth Syst. Sci. 2018, 22, 6323–6333. [Google Scholar] [CrossRef] [Green Version]
- Mille, C.; Wilson, L.; Amy, G.L.; Brothers, K. Fate of organochlorine compounds during aquifer storage and recovery: The Las Vegas experience. Groundwater 1993, 31, 410–416. [Google Scholar] [CrossRef]
- Maliva, R.G. Contaminant Attenuation and Natural Aquifer Treatment. In Anthropogenic Aquifer Recharge, Springer Cham: Switzerland, 2020; pp 165–208; Springer: Cham, Switzerland, 2020; pp. 165–208. [Google Scholar]
- Fram, M.S.; Bergamaschi, B.A.; Goodwin, K.D.; Fujii, R.; Clark, J.F. Processes affecting the trihalomethane concentrations associated with the third injection, storage, and recovery test at Lancaster, Antelope Valley, California, March 1998 through April 1999. Water Res. Invest. Rep. 2003, 3, 4062. [Google Scholar]
- Gallard, H.; von Gunten, U. Chlorination of natural organic matter: Kinetics of chlorination and of THM formation. Water Res. 2002, 36, 65–74. [Google Scholar] [CrossRef]
- Bekele, E.; Toze, S.; Patterson, B.; Higginson, S. Managed aquifer recharge of treated wastewater: Water quality changes resulting from infiltration through the vadose zone. Water Res. 2011, 45, 5764–5772. [Google Scholar] [CrossRef] [PubMed]
- Pedretti, D.; Barahona-Palomo, M.; Bolster, D.; Fernàndez-Garcia, D.; Sanchez-Vila, X.; Tartakovsky, D.M. Probabilistic analysis of maintenance and operation of artificial recharge ponds. Adv. Water Resour. 2012, 36, 23–35. [Google Scholar] [CrossRef]
- Masetti, M.; Pedretti, D.; Sorichetta, A.; Stevenazzi, S.; Bacci, F. Impact of a storm-water infiltration basin on the recharge dynamics in a highly permeable aquifer. Water Resour. Manag. 2016, 30, 149–165. [Google Scholar] [CrossRef]
Water Isotopes (‰, VSMOW) | DOC (mg/L) | |||
---|---|---|---|---|
δ18O | δ2H | 2–3 h | 5–6 h | |
DSW | 1.49 ± 0.03 | 11.47 ± 0.05 | 1.05 ± 0.15 | 0.53 ± 0.02 |
Ponding Water | 1.49 ± 0.01 | 11.47 ±0.16 | 0.53 ± 0.01 | 0.60 ± 0.05 |
Vadose Zone (m) | ||||
0.5 | ND | ND | ND | 0.74 ± 0.14 |
1.0 | 1.51 ± 0.03 | 11.53 ± 0.05 | 1.03 ± 0.03 | 0.63 ± 0.11 |
2.0 | 1.51 ± 0.02 | 11.46 ± 0.14 | 2.51 ± 0.11 | 0.71 ± 0.02 |
3.0 | 1.43 ± 0.02 | 11.18 ± 0.12 | 1.45 ± 0.07 | 2.35 ± 0.76 |
Water Isotopes (‰, VSMOW) | DOC (mg/L) | |||
---|---|---|---|---|
δ18O | δ2H | 2–3 h | 5–6 h | |
DSW | 1.51 ± 0.02 | 11.52 ± 0.04 | 1.81 ± 0.21 | 0.80 ± 0.19 |
Ponding Water | 1.48 ± 0.02 | 11.29 ± 0.05 | 0.64 ± 0.17 | 0.33 ± 0.02 |
Vadose Zone (m) | ||||
0.5 | ND | ND | ND | 0.66 ± 0.09 |
1.0 | 1.52 ± 0.01 | 11.55 ± 0.07 | 0.56 ± 0.05 | 0.39 ± 0.05 |
2.0 | 1.49 ± 0.01 | 11.54 ± 0.03 | 0.93 ± 0.04 | 1.46 ± 0.33 |
3.0 | 1.48 ± 0.02 | 11.53 ± 0.08 | 3.29 ± 0.08 | 1.66 ± 0.15 |
DOC (mg/L) | Br- (µg/L) | |||||
---|---|---|---|---|---|---|
8 d | 17 d | 24 d | 8 d | 17 d | 24 d | |
Pond Water | 16.5 ± 0.5 (n = 4) | 16.4 ± 0.7 (n = 8) | 17.4 (n = 1) | 34 ± 4 (n = 4) | 33 ± 9 (n = 6) | 30 (n = 1) |
Vadose Zone (m) | ||||||
0.5 | ND | 18.3 | 17.0 | 50 | 39 | 36 |
1 | ND | ND | 16.9 | 39 | 40 | 113 |
2 | ND | 17.6 | 13.6 | 50 | 44 | 38 |
3 | ND | 17.8 | 17.3 | 40 | 43 | ND |
8 d | 17 d | 24 d | ||||
---|---|---|---|---|---|---|
δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | |
Pond Water | 1.54 ± 0.02 (n = 3) | 11.52 ± 0.10 (n = 3) | 1.55 ± 0.03 (n = 5) | 11.69 ± 0.09 (n = 6) | ND | ND |
Vadose Zone (m) | ||||||
0.5 | 1.37 ± 0.04 | 10.45 ± 0.19 | 1.58 ± 0.03 | 11.77 ± 0.08 | 1.07 ± 0.07 | 9.47 ± 0.34 |
1 | 1.22 ± 0.03 | 9.96 ± 0.12 | 1.52 ± 0.03 | 11.60 ± 0.21 | 1.05 ± 0.05 | 9.43±0.31 |
2 | 1.49 ± 0.02 | 11.26 ± 0.14 | ND | ND | ND | ND |
3 | 1.43 ± 0.04 | 10.96 ± 0.20 | 1.55 ± 0.02 | 11.58 ± 0.04 | ND | ND |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernstein, A.; Studny, R.; Shyntychea, V.; Kurtzman, D.; Ganot, Y.; Katz, Y.; Asfaw, B.A.; Sakaguchi-Söder, K.; Schüth, C.; Siebner, H. Low Trihalomethane Formation during Managed Aquifer Recharge with Chlorinated Desalinated Water. Water 2020, 12, 711. https://doi.org/10.3390/w12030711
Bernstein A, Studny R, Shyntychea V, Kurtzman D, Ganot Y, Katz Y, Asfaw BA, Sakaguchi-Söder K, Schüth C, Siebner H. Low Trihalomethane Formation during Managed Aquifer Recharge with Chlorinated Desalinated Water. Water. 2020; 12(3):711. https://doi.org/10.3390/w12030711
Chicago/Turabian StyleBernstein, Anat, Raz Studny, Vinolia Shyntychea, Daniel Kurtzman, Yonatan Ganot, Yoram Katz, Berhane Abrha Asfaw, Kaori Sakaguchi-Söder, Christoph Schüth, and Hagar Siebner. 2020. "Low Trihalomethane Formation during Managed Aquifer Recharge with Chlorinated Desalinated Water" Water 12, no. 3: 711. https://doi.org/10.3390/w12030711
APA StyleBernstein, A., Studny, R., Shyntychea, V., Kurtzman, D., Ganot, Y., Katz, Y., Asfaw, B. A., Sakaguchi-Söder, K., Schüth, C., & Siebner, H. (2020). Low Trihalomethane Formation during Managed Aquifer Recharge with Chlorinated Desalinated Water. Water, 12(3), 711. https://doi.org/10.3390/w12030711