E-DATA: A Comprehensive Field Campaign to Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano
Abstract
:1. Introduction
2. Study Site
3. Design and Implementation of the E-DATA Field Experiment
3.1. Design of the Study
3.2. Implementation of the E-DATA Field Experiment
3.2.1. Meteorological Stations
3.2.2. Evaporation Measurement Systems and Surface Energy Balance
3.2.3. ABL Investigation Using Radiosondes and an UAV
3.2.4. DTS Measurements
3.2.5. CO2 Flux and Meteorological Conditions
4. Results
4.1. Meteorological Data
4.2. Evaporation and Surface Energy Balance
4.3. Diurnal Evolution of the Boundary Layer Structure
4.4. DTS Data
4.5. CO2 Fluxes and Biochemical Data Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hernández-López, M.F.; Braud, I.; Gironás, J.; Suárez, F.; Muñoz, J.F. Modelling evaporation processes in soils from the Huasco salt flat basin, Chile. Hydrol. Process. 2016, 30, 4704–4719. [Google Scholar] [CrossRef] [Green Version]
- Kampf, S.K.; Tyler, S.W.; Ortiz, C.A.; Muñoz, J.F.; Adkins, P.L. Evaporation and land surface energy budget at the Salar de Atacama, Northern Chile. J. Hydrol. 2005, 310, 236–252. [Google Scholar] [CrossRef]
- de la Fuente, A.; Niño, Y. Temporal and spatial features of the thermohydrodynamics of shallow salty lagoons in northern Chile. Limnol. Oceanogr. 2010, 55, 279–288. [Google Scholar] [CrossRef]
- Johnson, E.; Yáñez, J.; Ortiz, C.; Muñoz, J. Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrol. Sci. J. 2010, 55, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Bredehoeft, J. It Is the Discharge. Groundwater 2007, 45, 523. [Google Scholar] [CrossRef]
- Dorador, C.; Vila, I.; Remonsellez, F.; Imhoff, J.F.; Witzel, K.-P. Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. FEMS Microbiol. Ecol. 2010, 73, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Dorador, C.; Vila, I.; Witzel, K.-P.; Imhoff, J.F. Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam. Appl. Limnol. 2013, 182, 135–159. [Google Scholar] [CrossRef]
- Evans, J.G.; McNeil, D.D.; Finch, J.W.; Murray, T.; Harding, R.J.; Ward, H.C.; Verhoef, A. Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agric. For. Meteorol. 2012, 166–167, 221–233. [Google Scholar] [CrossRef]
- Gunson, A.J.; Klein, B.; Veiga, M.; Dunbar, S. Reducing mine water requirements. J. Clean. Prod. 2012, 21, 71–82. [Google Scholar] [CrossRef]
- Garreaud, R.; Vuille, M.; Clement, A.C. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 194, 5–22. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente, A.; Meruane, C. Dimensionless numbers for classifying the thermodynamics regimes that determine water temperature in shallow lakes and wetlands. Environ. Fluid Mech. 2017, 17, 1081–1098. [Google Scholar] [CrossRef]
- Philip, J.R. Advection, evaporation, and surface resistance. Irrig. Sci. 1987, 8, 101–114. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Hartogensis, O.K.; Allen, R.G.; Kramer, J.W.J.L. Regional Advection Perturbations in an Irrigated Desert (RAPID) experiment. Theor. Appl. Climatol. 2005, 80, 143–152. [Google Scholar] [CrossRef]
- Kool, D.; Ben-Gal, A.; Agam, N. Within-field advection enhances evaporation and transpiration in a vineyard in an arid environment. Agric. For. Meteorol. 2018, 255, 104–113. [Google Scholar] [CrossRef]
- Blanken, P.D.; Rouse, W.R.; Culf, A.D.; Spence, C.; Boudreau, L.D.; Jasper, J.N.; Kochtubajda, B.; Schertzer, W.M.; Marsh, P.; Verseghy, D. Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour. Res. 2000, 36, 1069–1077. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Liu, S.; Jiang, H.; Sheng, L.; Williams, Q.L. Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Higgins, C.W.; Pardyjak, E.; Froidevaux, M.; Simeonov, V.; Parlange, M.B. Measured and Estimated Water Vapor Advection in the Atmospheric Surface Layer. J. Hydrometeorol. 2013, 14, 1966–1972. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Putting the “vap” into evaporation. Hydrol. Earth Syst. Sci. 2007, 11, 210–244. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, E.; Gianotti, D.J.S.; Akbar, R.; Salvucci, G.D.; Entekhabi, D. Soil and Atmospheric Controls on the Land Surface Energy Balance: A Generalized Framework for Distinguishing Moisture-Limited and Energy-Limited Evaporation Regimes. Water Resour. Res. 2018, 54, 1831–1851. [Google Scholar] [CrossRef]
- DIHA-PUC. Levantamiento hidrogeológico para el desarrollo de nuevas fuentes de agua en áreas prioritarias de la zona norte de Chile, regiones XV, I, II y III [Hydrogeological characterization for the development of new water supply sources in priority areas in northern Chile, regions XV, I., II and III]. In Final Report VIII, Pilot System, 1st Region: Salar Del Huasco; Department Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile and Dirección General de Aguas: Santiago, Chile, 2009. [Google Scholar]
- Stull, R. An Introduction to Boundary Layer Meteorology. Available online: https://www.springer.com/gp/book/9789027727688 (accessed on 1 December 2019).
- Vilà-Guerau de Arellano, J.; Heerwaarden, C.C.; van Stratum, B.J.H.; van den Dries, K. Atmospheric Boundary Layer: Integrating Air Chemistry and Land Interactions; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Uribe, J.; Muñoz, J.F.; Gironás, J.; Oyarzún, R.; Aguirre, E.; Aravena, R. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile. Hydrogeol. J. 2015, 23, 1535–1551. [Google Scholar] [CrossRef]
- de la Fuente, A. Heat and dissolved oxygen exchanges between the sediment and water column in a shallow salty lagoon. J. Geophys. Res. Biogeosci. 2014, 119, 596–613. [Google Scholar] [CrossRef]
- Gardner, R.C.; Davidson, N.C. The Ramsar Convention. In Wetlands: Integrating Multidisciplinary Concepts; LePage, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 189–203. ISBN 978-94-007-0551-7. [Google Scholar]
- Houston, J. Variability of Precipitation in the Atacama Desert: Its Causes and Hydrological Impact -Houston -2006 -International Journal of Climatology -Wiley Online Library. Available online: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1359 (accessed on 14 November 2019).
- Garreaud, R.; Aceituno, P. Interannual Rainfall Variability over the South American Altiplano. J. Clim. 2001, 14, 2779–2789. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Pospichal, B.; Eisenbach, S.; Weihs, P.; Clements, C.B.; Steinacker, R.; Mursch-Radlgruber, E.; Dorninger, M. Inversion Breakup in Small Rocky Mountain and Alpine Basins. J. Appl. Meteorol. 2004, 43, 1069–1082. [Google Scholar] [CrossRef] [Green Version]
- Bretherton, C.S.; Park, S. A New Moist Turbulence Parameterization in the Community Atmosphere Model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Lobos Roco, F.; Vilà-Guerau de Arellano, J.; Pedruzo-Bagazgoitia, X. Characterizing the influence of the marine stratocumulus cloud on the land fog at the Atacama Desert. Atmos. Res. 2018, 214, 109–120. [Google Scholar] [CrossRef]
- Jiménez, P.A.; de Arellano, J.V.-G.; Dudhia, J.; Bosveld, F.C. Role of synoptic- and meso-scales on the evolution of the boundary-layer wind profile over a coastal region: The near-coast diurnal acceleration. Meteorol. Atmos. Phys. 2016, 128, 39–56. [Google Scholar] [CrossRef]
- Dee, P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Fratini, G.; Mauder, M. Towards a consistent eddy-covariance processing: An intercomparison of EddyPro and TK3. Atmos. Meas. Tech. 2014, 7, 2273–2281. [Google Scholar] [CrossRef] [Green Version]
- Beyrich, F.; De Bruin, H.A.R.; Meijninger, W.M.L.; Schipper, J.W.; Lohse, H. Results from One-Year Continuous Operation of a Large Aperture Scintillometer over a Heterogeneous Land Surface. Bound. Layer Meteorol. 2002, 105, 85–97. [Google Scholar] [CrossRef]
- Meijninger, W.M.L.; Green, A.E.; Hartogensis, O.K.; Kohsiek, W.; Hoedjes, J.C.B.; Zuurbier, R.M.; De Bruin, H.A.R. Determination of Area-Averaged Water Vapour Fluxes with Large Aperture and Radio Wave Scintillometers over a Heterogeneous Surface–Flevoland Field Experiment. Bound. Layer Meteorol. 2002, 105, 63–83. [Google Scholar] [CrossRef]
- Ward, H.C.; Evans, J.G.; Hartogensis, O.K.; Moene, A.F.; Bruin, H.A.R.D.; Grimmond, C.S.B. A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q. J. R. Meteorol. Soc. 2013, 139, 1912–1922. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.J. Algorithms for Obtaining Atmospheric Surface-Layer Fluxes from Scintillation Measurements. J. Atmos. Ocean. Technol. 1997, 14, 456–467. [Google Scholar] [CrossRef]
- Kooijmans, L.M.J.; Hartogensis, O.K. Surface-Layer Similarity Functions for Dissipation Rate and Structure Parameters of Temperature and Humidity Based on Eleven Field Experiments. Bound. Layer Meteorol. 2016, 160, 501–527. [Google Scholar] [CrossRef] [Green Version]
- Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.; Berkowicz, S.M. Surface energy balance closure in an arid region: Role of soil heat flux. Agric. For. Meteorol. 2004, 122, 21–37. [Google Scholar] [CrossRef]
- Hausner, M.B.; Suárez, F.; Glander, K.E.; van de Giesen, N.; Selker, J.S.; Tyler, S.W. Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors 2011, 11, 10859–10879. [Google Scholar] [CrossRef]
- Suárez, F.; Aravena, J.E.; Hausner, M.B.; Childress, A.E.; Tyler, S.W. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment. Hydrol. Earth Syst. Sci. 2011, 15, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Zúñiga, L.R.; Campos, V.; Pinochet, H.; Prado, B. A limnological reconnaissance of Lake Tebenquiche, Salar de Atacama, Chile. Hydrobiologia 1991, 210, 19–24. [Google Scholar] [CrossRef]
- Dejoux, C. Benthic invertebrates of some saline lakes of the Sud Lipez region, Bolivia. Hydrobiologia 1993, 267, 257–267. [Google Scholar] [CrossRef]
- Williams, W.D.; Carrick, T.R.; Bayly, I.A.E.; Green, J.; Herbst, D.B. Invertebrates in salt lakes of the Bolivian Altiplano. Int. J. Salt Lake Res. 1995, 4, 65–77. [Google Scholar] [CrossRef]
- Revsbech, N.P.; Madsen, B.L.; Jørgensen, B. Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data. Limnol. Oceanogr. 1986, 31, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Ordoñez, C.; de la Fuente, A.; Díaz-Palma, P. Modeling the influence of benthic primary production on oxygen transport through the water–sediment interface. Ecol. Model. 2015, 311, 1–10. [Google Scholar] [CrossRef]
- Demergasso, C.; Chong, G.; Galleguillos, P.; Escudero, L.; Martínez-Alonso, M.; Esteve, I. Tapetes microbianos del Salar de Llamará, norte de Chile. Rev. Chil. Hist. Nat. 2003, 76, 485–499. [Google Scholar] [CrossRef] [Green Version]
- Dorador, C.; Vila, I.; Imhoff, J.F.; Witzel, K.-P. Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: An example of geographical dispersion? FEMS Microbiol. Ecol. 2008, 64, 419–432. [Google Scholar] [CrossRef]
- Rutllant, J.A.; Fuenzalida, H.; Aceituno, P. Climate dynamics along the arid northern coast of Chile: The 1997–1998 Dinámica del Clima de la Región de Antofagasta (DICLIMA) experiment. J. Geophys. Res. Atmos. 2003, 108, 4538. [Google Scholar] [CrossRef]
- Ohba, M.; Sugimoto, S. Differences in climate change impacts between weather patterns: Possible effects on spatial heterogeneous changes in future extreme rainfall. Clim. Dyn. 2019, 52, 4177–4191. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Mysterud, A.; Ottersen, G.; Hurrell, J.W.; Chan, K.-S.; Lima, M. Ecological Effects of Climate Fluctuations. Science 2002, 297, 1292–1296. [Google Scholar] [CrossRef] [Green Version]
- Vozila, A.B.; Güttler, I.; Ahrens, B.; Obermann-Hellhund, A.; Prtenjak, M.T. Wind Over the Adriatic Region in CORDEX Climate Change Scenarios. J. Geophys. Res. Atmos. 2019, 124, 110–130. [Google Scholar] [CrossRef]
- Eder, F.; De Roo, F.; Kohnert, K.; Desjardins, R.L.; Schmid, H.P.; Mauder, M. Evaluation of Two Energy Balance Closure Parametrizations. Bound. Layer Meteorol. 2014, 151, 195–219. [Google Scholar] [CrossRef]
- Charuchittipan, D.; Babel, W.; Mauder, M.; Leps, J.-P.; Foken, T. Extension of the Averaging Time in Eddy-Covariance Measurements and Its Effect on the Energy Balance Closure. Bound. Layer Meteorol. 2014, 152, 303–327. [Google Scholar] [CrossRef] [Green Version]
- Russell, E.S.; Liu, H.; Gao, Z.; Finn, D.; Lamb, B. Impacts of soil heat flux calculation methods on the surface energy balance closure. Agric. For. Meteorol. 2015, 214–215, 189–200. [Google Scholar] [CrossRef]
- Liebethal, C.; Foken, T. Evaluation of six parameterization approaches for the ground heat flux. Theor. Appl. Climatol. 2007, 88, 43–56. [Google Scholar] [CrossRef]
- Foken, T. The energy Balance Closure Problem: An Overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef]
- Lüdi, A.; Beyrich, F.; Mätzler, C. Determination of the Turbulent Temperature–Humidity Correlation from Scintillometric Measurements. Bound. Layer Meteorol. 2005, 117, 525–550. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Bou-Zeid, E.; De Bruin, H.A.R. Monin–Obukhov Similarity Functions for the Structure Parameters of Temperature and Humidity. Bound. Layer Meteorol. 2012, 145, 45–67. [Google Scholar] [CrossRef]
- Stoffer, R. Revisiting Raw Data Processing of Combined Optical-Microwave Scintillometers. M.Sc. Thesis, Wageningen University & Research, Wageningen, The Netherlands, 2018. [Google Scholar]
- van Heerwaarden, C.C.; Arellano, J.V.-G.; de Moene, A.F.; Holtslag, A.A.M. Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Q. J. R. Meteorol. Soc. 2009, 135, 1277–1291. [Google Scholar] [CrossRef]
- Raynor, G.S.; Sethuraman, S.; Brown, R.M. Formation and characteristics of coastal internal boundary layers during onshore flows. Bound. Layer Meteorol. 1979, 16, 487–514. [Google Scholar] [CrossRef]
- Batchvarova, E.; Gryning, S.-E. Wind climatology, atmospheric turbulence and internal boundary-layer development in Athens during the MEDCAPHOT-TRACE experiment. Atmos. Environ. 1998, 32, 2055–2069. [Google Scholar] [CrossRef]
- Adams, E.E.; Cosler, D.J.; Helfrich, K.R. Evaporation from heated water bodies: Predicting combined forced plus free convection. Water Resour. Res. 1990, 26, 425–435. [Google Scholar] [CrossRef]
- Vergara, J. Estudio de la Variabilidad Intradiaria de los Flujos de Calor, Masa y Momentum en la Interfaz Aire-Agua de una Laguna Somera Salina del Altiplano Chileno; Universidad de Chile: Santiago, Chile, 2017. [Google Scholar]
- Amigo, J.; Meza, F.; Suárez, F. A transient model for temperature prediction in a salt-gradient solar pond and the ground beneath it. Energy 2017, 132, 257–268. [Google Scholar] [CrossRef]
Variable | EC- Water | EC- Desert | EC- Wet-Salt | OMS | DTS | Met. St. 1–8 | Salar del Huasco Met. St. |
---|---|---|---|---|---|---|---|
Incoming shortwave rad. | 1 | - | - | - | - | - | 22 |
Incoming longwave rad. | 1 | - | - | - | - | - | - |
Outgoing shortwave rad. | 1 | - | - | - | - | - | - |
Outgoing longwave rad. | 1 | - | - | - | - | - | - |
Net shortwave radiation | 1 | 8 | - | - | - | - | - |
Net longwave radiation | 1 | 8 | - | - | - | - | - |
Total net radiation | 1 | 8 | 12 | - | - | - | - |
Photosynthetic active rad. | - | - | 13 | ||||
Latent heat flux | 2 | 2 | 2 | 14, 15 | - | - | - |
Sensible heat flux | 2 | 2 | 2 | 14, 15 | - | - | - |
Soil heat flux | 3 | 9, 10 | 9, 10 | - | - | - | |
Soil temperature | - | 4, 11 | 4, 10 | - | - | - | |
Water temperature | 4 | - | - | - | 17 | - | - |
Wind speed | 2, 5 | 2 | 2 | 16 | - | 18, 19 | 5 |
Air temperature | 2, 6 | 2, 4 | 2 | 16 | 17 | 20, 21 | 23 |
Relative humidity | 2, 6 | 2 | 2 | 16 | - | 20, 21 | 23 |
Atmospheric pressure | 2, 7 | 2, 7 | 2 | 16 | - | 21 | 7 |
Precipitation | - | - | - | 16 | - | - | 24 |
Name of Station | Type | Latitude | Longitude | Elevation (m.a.s.l.) |
---|---|---|---|---|
Salar del Huasco | Met. station | 20°15.5′ S | 68°52.4′ W | 3803 |
NS1 | Met. station | 20°19.3′ S | 68°52.9′ W | 3807 |
NS2 | Met. station | 20°20.6′ S | 68°53.7′ W | 3921 |
NS3 | Met. station | 20°21.8′ S | 68°54.3′ W | 3973 |
NS4 | Met. station | 20°23.0′ S | 68°55.0′ W | 3996 |
EW1 | Met. station | 20°17.3′ S | 68°54.1′ W | 3938 |
EW2 | Met. station | 20°17.2′ S | 68°54.9′ W | 4134 |
EW3 | Met. station | 20°17.4 ′ S | 68°56.4′ W | 4139 |
EW4 | Met. station | 20°17.1′ S | 68°58.5′ W | 4284 |
EC-water | EC/Met. Station | 20°16.2′ S | 68°52.8′ W | 3790 |
EC-desert | EC/Met. Station | 20°21.0′ S | 68°54.0′ W | 3953 |
EC-wet-salt | EC/Met. Station | 20°16.8′ S | 68°52.2′ W | 3790 |
OMS-Tx | Scintillometer | 20°17.1′ S | 68°52.6′ W | 3791 |
OMS-Rx | Scintillometer/Met. Station | 20°16.8′ S | 68°53.3′ W | 3790 |
Date and Local Time | Location | Date and Local Time | Location | Date and Local Time | Location |
---|---|---|---|---|---|
18 November 2018 09:00 | Lake | 21 November 2018 09:00 | Lake | 22 November 2018 09:00 | Desert |
18 November 2018 12:00 | Lake | 21 November 2018 12:00 | Lake | 22 November 2018 12:00 | Desert |
18 November 2018 18:00 | Lake | 21 November 2018 15:00 | Lake | 22 November 2018 15:00 | Desert |
19 November 2018 09:00 | Desert | 21 November 2018 18:00 | Lake | 22 November 2018 17:00 | Desert |
19 November 2018 12:00 | Desert | 21 November 2018 21:00 | Lake | 22 November 2018 21:00 | Desert |
19 November 2018 18:00 | Desert |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez, F.; Lobos, F.; de la Fuente, A.; Vilà-Guerau de Arellano, J.; Prieto, A.; Meruane, C.; Hartogensis, O. E-DATA: A Comprehensive Field Campaign to Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano. Water 2020, 12, 745. https://doi.org/10.3390/w12030745
Suárez F, Lobos F, de la Fuente A, Vilà-Guerau de Arellano J, Prieto A, Meruane C, Hartogensis O. E-DATA: A Comprehensive Field Campaign to Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano. Water. 2020; 12(3):745. https://doi.org/10.3390/w12030745
Chicago/Turabian StyleSuárez, Francisco, Felipe Lobos, Alberto de la Fuente, Jordi Vilà-Guerau de Arellano, Ana Prieto, Carolina Meruane, and Oscar Hartogensis. 2020. "E-DATA: A Comprehensive Field Campaign to Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano" Water 12, no. 3: 745. https://doi.org/10.3390/w12030745
APA StyleSuárez, F., Lobos, F., de la Fuente, A., Vilà-Guerau de Arellano, J., Prieto, A., Meruane, C., & Hartogensis, O. (2020). E-DATA: A Comprehensive Field Campaign to Investigate Evaporation Enhanced by Advection in the Hyper-Arid Altiplano. Water, 12(3), 745. https://doi.org/10.3390/w12030745