Addressing the Water–Energy Nexus by Coupling the Hydrological Model with a New Energy LISENGY Model: A Case Study in the Iberian Peninsula
Abstract
:1. Introduction
- (a)
- Derive the empirical models and volume–depth relationships to quantify the reservoir storage using long-term remotely sensed maximum water areas from a 30-year Global Water Surface dataset [26] which enables to evaluate reservoirs where data were not available;
- (b)
- Build a new hydropower model and observe the seasonal and interannual changes of energy production for 168 studied reservoirs in the Iberian Peninsula, which is unique;
- (c)
- Establish a 10-year water–energy linked system for the 2007–2016 period for the Iberian Peninsula which was not available before and thus evaluate the temporal and spatial dynamics of water storage for each reservoir’s cross-section shape and assess hydropower potential at regional and reservoir level that can serve as an important source of information for future modeling with changing climate.
2. Study Area and Data Used
2.1. Study Area
2.2. Data Used
2.2.1. Reservoir Data and Characteristics
2.2.2. Reservoir Inflow Data
2.2.3. Price Data
3. Modeling Framework
3.1. Overview
- LISFLOOD provided the inflows into the selected reservoirs. Those inflows were fed directly to the daily hydropower LISENGY model that simulated water level and discharge for hydropower production.
- LISENGY established the operational power system rules of hydropower plants for a determined period (one hydrological year) and optimized releases to maximize profit subject to equality, inequality and operational constraints derived from the power system rules (see optimization in Section 3.4).
- Coupling between LISFLOOD and LISENGY was done by external communication (data coupling) where outputs from LISFLOOD at the matching cells (i.e., upstream from the reservoir) became inputs to LISENGY without defining any internal boundary condition between them.
3.2. Volume–Depth Morphometry Approximation
3.3. LISENGY Hydropower Model Development
3.4. Model Optimization
3.5. Model Validation Techniques
4. Results and Discussion
4.1. Reservoir Morphometry
4.2. Study Sites for Water Storage Validation
4.3. Power Generation over the Iberian Peninsula
4.4. Choices Made in This Study
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.W.A.; Heinke, J.; von Bloh, W.; Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 2011, 47, W03509. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Budhakooncharoen, S.; Bronstert, A.; Hoff, H.; Lettenmaier, D.; Menzel, L.; Schulze, R. Coping with variability and change: Floods and droughts. Nat. Resour. Forum 2002, 26, 263–274. [Google Scholar] [CrossRef]
- Rodrigues, L.N.; Liebe, J. Small reservoirs depth-area-volume relationships in Savannah Regions of Brazil and Ghana. Water Resour. Irrig. Manag. 2013, 1, 1–10. [Google Scholar]
- Gaudard, L.; Romerio, F. Reprint of “The future of hydropower in Europe: Interconnecting climate, markets and policies”. Environ. Sci. Policy 2014, 43, 5–14. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Int. Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Zagona, E.A.; Fulp, T.J.; Shane, R.; Magee, T.; Goranflo, H.M. Riverware: A Generalized Tool for Complex Reservoir System Modeling1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 913–929. [Google Scholar] [CrossRef]
- Labadie, J.W. MODSIM River Basin Network Flow Model. Color State Univ. 2003. Available online: http://modsim.engr.colostate.edu (accessed on 1 January 2018).
- Klipsch, J.D.; Hurst, M.B. HEC-ResSim: Reservoir System Simulation, User’s Manual Version 3.0 CPD-82; USACE, Hydrologic Engineering Center: Davis, CA, USA, 2007; p. 512. [Google Scholar]
- Hamlet, A.F.; Lettenmaier, D.P. Effects of Climate Change on Hydrology and Water Resources in the Columbia River Basin1. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1597–1623. [Google Scholar] [CrossRef]
- Alcamo, J.; Doll, P.; Kaspar, F.; Siebert, S. Global Change and Global Scenarios of Water Use and Availability: An Application of Water GAP1.0; University of Kassel: Kassel, Germany, 1997; 47p. [Google Scholar]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- De Fraiture, C. Integrated water and food analysis at the global and basin level. An application of WATERSIM. Water Resour. Manag. 2007, 2, 185–198. [Google Scholar] [CrossRef]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and Energy. Annu. Rev. Energy Environ. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.-F.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Annor, F.O.; van de Giesen, N.; Liebe, J.; van de Zaag, P.; Tilmant, A.; Odai, S.N. Delineation of small reservoirs using radar imagery in a semi-arid environment: A case study in the upper east region of Ghana. Phys. Chem. Earth Parts A/B/C 2009, 34, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Feng, L.; Hou, X.; Chen, X. Remote Sensing of the Water Storage Dynamics of Large Lakes and Reservoirs in the Yangtze River Basin from 2000 to 2014. Sci. Rep. 2016, 6, 36405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, L.; Lu, X.X. Delineation of reservoirs using remote sensing and their storage estimate: An example of the Yellow River basin, China. Hydrol. Process. 2012, 26, 1215–1229. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Hirsch, P.E.; Schillinger, S.; Weigt, H.; Burkhardt-Holm, P. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower. PLoS ONE 2014, 9, e114889. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, E.P.; Schillinger, M.; Appoloni, K.; Burkhardt-Holm, P.; Weigt, H. Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower. Sustainability 2016, 8, 875. [Google Scholar] [CrossRef] [Green Version]
- Liebe, J.; van de Giesen, N.; Andreini, M. Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana. Phys. Chem. Earth Parts A/B/C 2005, 30, 448–454. [Google Scholar] [CrossRef]
- Karran, D.J.; Westbrook, C.J.; Wheaton, J.M.; Johnston, C.A.; Bedard-Haughn, A. Rapid surface-water volume estimations in beaver ponds. Hydrol. Earth Syst. Sci. 2017, 21, 1039–1050. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; van der Kamp, G. Simple equations to represent the volume–area–depth relations of shallow wetlands in small topographic depressions. J. Hydrol. 2000, 237, 74–85. [Google Scholar] [CrossRef]
- Kühne, A. Charakteristische Kenngrössen schweizerischer Speicherseen. Geogr. Helv. 1978, 33, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Blanco Carramolino, R.; Kavvadias, K.; Adamovic, M.; Bisselink, B.; Roo De, A.; Hidalgo Gonzalez, I. The Water-Power Nexus of the Iberian PENINSULA POWER SYSTEM: WATERFLEX Project; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Kanellopoulos, K.; Hidalgo González, I.; Medarac, H.; Zucker, A. The Joint Research Centre Power Plant Database (JRC-PPDB)—A European Power Plant Database for Energy Modelling; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Burek, P.; De Roo, A.; van der Knijff, J. LISFLOOD—Distributed Water Balance and Flood Simulation Model—Revised User Manual; EUR 26162 10/2013; Publications Office of the European Union: Luxembourg; Directorate-General Joint Research Centre: Brussels, Belgium; Institute for Environment and Sustainability: Ispra, Italy, 2013; ISBN 978-92-79-33190-9. [Google Scholar]
- De Roo, A.P.J.; Wesseling, C.G.; Van Deursen, W.P.A. Physically based river basin modelling within a GIS: The LISFLOOD model. Hydrol. Process. 2000, 14, 1981–1992. [Google Scholar] [CrossRef]
- Van Der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 2010, 24, 189–212. [Google Scholar]
- Bisselink, B.; Zambrano-Bigiarini, M.; Burek, P.; de Roo, A. Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions. J. Hydrol. Reg. Stud. 2016, 8, 112–129. [Google Scholar] [CrossRef]
- Emerton, R.; Zsoter, E.; Arnal, L.; Cloke, H.L.; Muraro, D.; Prudhomme, C.; Stephens, E.M.; Salamon, P.; Pappenberger, F. Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0. Geosci. Model. Dev. 2018, 11, 3327–3346. [Google Scholar] [CrossRef] [Green Version]
- Bisselink, B.; Bernhard, J.; Gelati, E.; Adamovic, M.; Guenther, S.; Mentaschi, L.; De Roo, A. Impact of a Changing Climate, Land Use, and Water Usage on Europe’s Water Resources; EUR 29130 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-80288-1. [Google Scholar]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Shang, S. Lake surface area method to define minimum ecological lake level from level-area-storage curves. J. Arid Land 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Brooks, R.T.; Hayashi, M. Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England. Wetlands 2002, 22, 247–255. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, V.H.; Soroosh, S.; Ogou, Y.P. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Trigo, R.M.; Anel, J.A.; Garcia-Herrera, R.; Barriopedro, D.; Gimeno, L.; Nieto, R.; Castillo, R.; Allen, M.R.; Massen, N. The record Winter Drought of 2011—12 in the Iberian Peninsula. Bull. Am. Meteorol. Soc. 2013, 41–45. [Google Scholar]
- Bernardo, V.; Fageda, X.; Termes, M. Do droughts have long-term effects on water consumption? Evidence from the urban area of Barcelona. Appl. Econ. 2015, 47, 5131–5146. [Google Scholar] [CrossRef]
- Martin-Ortega, J.; Markandya, A. The Costs of Drought: The Exceptional 2007–2008 Case of Barcelona; BC3 Work Pap. Series 2009-09; Basque Centre for Climate Change: Bilbao, Spain, 2009. [Google Scholar]
- Sousa, P.M.; Trigo, R.M.; Aizpurua, P.; Nieto, R.; Gimeno, L.; Garcia-Herrera, R. Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat. Hazards Earth Syst. Sci. 2011, 11, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Xoplaki, E.; Trigo, R.M.; García-Herrera, R.; Barriopedro, D.; D’Andrea, F.; Fischer, E.M.; Gimeno, L.; Gouveia, C.; Hernández, E.; Kuglitsch, F.G. Large-Scale Atmospheric Circulation Driving Extreme Climate Events in the Mediterranean and its Related Impacts. Clim. Mediterr. Reg. 2012, 347–417. [Google Scholar]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Cobo, R. Los sedimentos de los embalses españoles. Ing. Del Agua 2008, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Ntega Victor, N.; Salamon, P.; Gomes, G.; Sint, H.; Lorini, V.; Thielen Del Pozo, J.; Zambrano, H. EFAS-Meteo: A European Daily High-Resolution Gridded Meteorological Data Set for 1990–2011; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Adamovic, M.; Braud, I.; Branger, F.; Kirchner, J.W. Assessing the simple dynamical systems approach in a Mediterranean context: Application to the Ardèche catchment (France). Hydrol. Earth Syst. Sci. 2015, 19, 2427–2449. [Google Scholar] [CrossRef] [Green Version]
- Tekleab, S.; Uhlenbrook, S.; Mohamed, Y.; Savenije, H.H.G.; Temesgen, M.; Wenninger, J. Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrol. Earth Syst. Sci. 2011, 15, 2179–2193. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Dynesius, M.; Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 1994, 266, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and Flow Regulation of the World’s Large River Systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Months | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inflows | 98.6 | 101.3 | 99.8 | 99.9 | 70.3 | 43.3 | 24.9 | 19.4 | 18.2 | 26.2 | 46.5 | 58.3 |
Category | Dam Height (m) | Volume (m3) | Area (m2) | Power Capacity (MW) | Q Max (m3/s) | Bwc (-) | p (-) | α (-) |
---|---|---|---|---|---|---|---|---|
convex | 75.21 | 4.80 × 108 | 3.46 × 107 | 121.84 | 23.75 | 0.16 | 0.39 | 69,136.27 |
conical | 75.24 | 2.15 × 108 | 9.97 × 106 | 131.93 | 51.02 | 0.27 | 0.75 | 514.51 |
concave | 69.75 | 2.97 × 108 | 6.50 × 106 | 288.73 | 32.00 | 0.61 | 3.20 | 421.74 |
Reservoir | Alarcon | Fuensanta | La Brena |
---|---|---|---|
Latitude | 39.57° N | 38.39° N | 37.83° N |
Longitude | 2.11° W | 2.21° W | 5.04° W |
River | Jucar | Segura | Guadiato |
Catchment (km2) | 2937 | 1208 | 1494 |
Dam height (m) | 67 | 82 | 54 |
Volume (3 | 1118 | 210 | 823 |
Area (m2) | 97,352,707 | 8,309,236 | 25,131,657 |
Capacity (MW) | 56 | 9 | 83 |
Altitude (m) | 806 | 602 | 121 |
Hydrological Year | Alarcon | Fuensanta | La Brena |
---|---|---|---|
2007 | 6.46 | 15.39 | 23.36 |
2008 | 23.49 | 52.15 | 30.24 |
2009 | 30.68 | 52.47 | 41.66 |
2010 | 28.81 | 45.13 | 32.51 |
2011 | 15.28 | 21.29 | 28.40 |
2012 | −0.71 | 20.05 | 10.78 |
2013 | −2.77 | 6.79 | -5.70 |
2014 | −24.36 | 18.55 | −21.58 |
2015 | 6.46 | 15.39 | 23.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamovic, M.; Gelati, E.; Bisselink, B.; Roo, A.D. Addressing the Water–Energy Nexus by Coupling the Hydrological Model with a New Energy LISENGY Model: A Case Study in the Iberian Peninsula. Water 2020, 12, 762. https://doi.org/10.3390/w12030762
Adamovic M, Gelati E, Bisselink B, Roo AD. Addressing the Water–Energy Nexus by Coupling the Hydrological Model with a New Energy LISENGY Model: A Case Study in the Iberian Peninsula. Water. 2020; 12(3):762. https://doi.org/10.3390/w12030762
Chicago/Turabian StyleAdamovic, Marko, Emiliano Gelati, Berny Bisselink, and Ad De Roo. 2020. "Addressing the Water–Energy Nexus by Coupling the Hydrological Model with a New Energy LISENGY Model: A Case Study in the Iberian Peninsula" Water 12, no. 3: 762. https://doi.org/10.3390/w12030762
APA StyleAdamovic, M., Gelati, E., Bisselink, B., & Roo, A. D. (2020). Addressing the Water–Energy Nexus by Coupling the Hydrological Model with a New Energy LISENGY Model: A Case Study in the Iberian Peninsula. Water, 12(3), 762. https://doi.org/10.3390/w12030762