A Definition of Aquaculture Intensity Based on Production Functions—The Aquaculture Production Intensity Scale (APIS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope
2.2. Method
- (1)
- Literature review to find how the literature talks about intensity of aquaculture.
- (2)
- Create definitions by finding what production functions are used in each of the terms.
- (3)
- Check if the new definitions are in line with previous definitions found in the literature.
- (4)
- Expand the definitions to a scale that allows more granular descriptions of the intensity of aquaculture systems. This is done by adding levels to each variable based on how aquaculture intensifies its production of product pr. volume of water.
2.3. Literature Search to Find Descriptions of Intensity in Aquaculture
2.4. Literature Search to Find Previous Definitions
3. The Production Functions of Aquaculture Systems
4. Systems of Different Intensity Levels
4.1. Extensive Aquaculture Systems
4.2. Semi-Intensive Aquaculture Systems
4.3. Intensive Aquaculture Systems
5. Definitions of System Intensity Levels in Terms of the Production Functions
Extensive aquaculture systems are systems that always supply the output function of ‘harvesting’ and have at least one of the input functions or the output function of ‘preventing escapes‘. The other input functions apart from ‘providing light’ are optional. Extensive aquaculture systems have no treatment functions.
Semi-intensive aquaculture systems are systems that always supply the input function of ‘stocking‘, and either ‘feeding‘ or ‘fertilizing´ and the output function of ‘harvesting‘. The other input and output functions are optional. These systems have at least one treatment function.
Intensive aquaculture systems are systems that always supply the input functions of ‘supplying water‘, ‘stocking‘ and ‘feeding‘, the treatment functions of ‘Controlling DO and CO2’, ‘Controlling organic matter’, ‘Controlling nitrogen compounds’ and ‘Controlling solids’ and the output function of ‘harvesting‘. All other functions are optional.
6. Previous Definitions of Aquaculture Systems Intensity
Definitions Compared to Previous Work and Definitions
Stocking density 8–18 PL/m2, need-based water exchange, aeration by pumping, use of commercial pelleted feed and microbial products, with or without reservoir, water depth 1–2 m.
Stocking density 4–8 PL/m2, need-based water exchange, no aeration, use of locally prepared feed, water depth 1 m.
Stocking density <4 PL/m2, no water exchange, no aeration, occasional use of locally prepared feed, water depth 0.75–1 m. Partial stocking and partial harvesting throughout the culture.
Stocking density >18 PL/m2, frequent water exchange, aeration by aerators, use of commercial pelleted feed and microbial products, reservoir for water treatment, water depth 1 m.
7. The Aquaculture Production Intensity Scale
8. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Doc nr. CC BY-NC-SA 3.0 IGO; FAO: Rome, Italy, 2018. [Google Scholar]
- Björnsdóttir, R.; Oddsson, G.V.; Thorarinsdottir, R.; Unnthorsson, R. Taxonomy of means and ends in aquaculture production—Part 1: The functions. Water 2016, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Alam, M.F.; Hasan, M.R. The economics of sutchi catfish (Pangasianodon hypophthalmus) aquaculture under three different farming systems in rural Bangladesh. Aquac. Res. 2010, 41, 1668–1682. [Google Scholar] [CrossRef]
- Abraham, T.J.; Ghosh, S.; Nagesh, T.S.; Sasmal, D. Distribution of bacteria involved in nitrogen and sulphur cycles in shrimp culture systems of West Bengal, India. Aquaculture 2004, 239, 275–288. [Google Scholar] [CrossRef]
- Joffre, O.M.; Bosma, R.H. Typology of shrimp farming in Bac Lieu Province, Mekong Delta, using multivariate statistics. Agric. Ecosyst. Environ. 2009, 132, 153–159. [Google Scholar] [CrossRef]
- Handfield, R.B.; Melnyk, S.A. The scientific theory-building process: A primer using the case of TQM. J. Oper. Manag. 1998, 16, 321–339. [Google Scholar] [CrossRef]
- Vilbergsson, B.; Oddsson, G.V.; Unnthorsson, R. Taxonomy of means and ends in aquaculture production—Part 2: The technical solutions of controlling solids, disolved gasses and pH. Water 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Vilbergsson, B.; Oddsson, G.V.; Unnthorsson, R. Taxonomy of means and ends in aquaculture production—Part 3: The technical solutions of controlling N compounds, organic matter, P compounds, metals, temperature and preventing disease. Water 2016, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Vilbergsson, B.; Oddsson, G.V.; Unnthorsson, R. Taxonomy of means and ends in aquaculture production—Part 4: The mapping of technical solutions onto multiple treatment function. Water 2016, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Darrason, G.D. Increased Capacity in Aquaculture: Assessment of Limiting Factors and Investment Prioritization; University of Iceland: Reykjavik, Iceland, 2016. [Google Scholar]
- Lekang, O.-I. Aquaculture Engineering, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Iwama, G.K. Interactions between aquaculture and the environment. Crit. Rev. Environ. Control 1991, 21, 177–219. [Google Scholar] [CrossRef]
- Gomiero, T.; Giampietro, M.; Bukkens, S.G.F.; Paoletti, M.G. Biodiversity use and technical performance of freshwater fish aquaculture in different socioeconomic contexts: China and Italy. Agric. Ecosyst. Environ. 1997, 62, 169–185. [Google Scholar] [CrossRef]
- Edwards, P.; Demaine, H. Rural Aquaculture: Overview and Framework for Country Reviews; FAO: Bangkok, Thailand, 1998. [Google Scholar]
- Hari, B.; Madhusoodana Kurup, B.; Varghese, J.T.; Schrama, J.W.; Verdegem, M.C.J. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture 2006, 252, 248–263. [Google Scholar] [CrossRef]
- Wahab, M.A.; Bergheim, A.; Braaten, B. Water quality and partial mass budget in extensive shrimp ponds in Bangladesh. Aquaculture 2003, 218, 413–423. [Google Scholar] [CrossRef]
- Dasgupta, S.; Pandey, B.K.; Sarangi, N.; Mukhopadhyay, P.K. Evaluation of water productivity and fish yield in sewage-fed vis-a-vis fertilized based carp culture. Bioresour. Technol. 2008, 99, 3499–3506. [Google Scholar] [CrossRef]
- Islam, M.S.; Sarker, M.J.; Yamamoto, T.; Wahab, M.A.; Tanaka, M. Water and sediment quality, partial mass budget and effluent N loading in coastal brackishwater shrimp farms in Bangladesh. Mar. Pollut. Bull. 2004, 48, 471–485. [Google Scholar] [CrossRef]
- Nilson, H.; Wetengere, K. Adoption and Viability Criteria for Semi-Intensive Fish Farming: A Report on a Socio-Economic Study in Ruvuma and Mbeya Regions, Tanzania; FAO: Harare, Zimbabwe, 1994. [Google Scholar]
- Gutiérrez-Estrada, J.C.; Pulido-Calvo, I.; de la Rosa, I.; Marchini, B. Modeling inflow rates for the water exchange management in semi-intensive aquaculture ponds. Aquac. Eng. 2012, 48, 19–30. [Google Scholar] [CrossRef]
- Lima, J.S.G.; Rivera, E.C.; Focken, U. Emergy evaluation of organic and conventional marine shrimp farms in Guaraira Lagoon, Brazil. J. Clean. Prod. 2012, 35, 194–202. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Cornet, J.; Donnay-Moreno, C.; Gouygou, J.P.; Berge, J.P.; Bacelar, M.; Escorcio, C.; Rocha, E.; Malhao, F.; Cardinal, M. Quality differences of gilthead sea bream from distinct production systems in Southern Europe: Intensive, integrated, semi-intensive or extensive systems. Food Control 2011, 22, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Folke, C.; Kautsky, N. Aquaculture With Its Environment—Prospects For Sustainability. Ocean Coast. Manag. 1992, 17, 5–24. [Google Scholar] [CrossRef]
- Moss, S.M.; Pruder, G.D.; Leber, K.M.; Wyban, J.A. The Relative Enhancement Of Penaeus-Vannamei Growth By Selected Fractions Of Shrimp Pond Water. Aquaculture 1992, 101, 229–239. [Google Scholar] [CrossRef]
- Alfiansah, Y.R.; Hassenruck, C.; Kunzmann, A.; Taslihan, A.; Harder, J.; Garde, A. Bacterial Abundance and Community Composition in Pond Water From Shrimp Aquaculture Systems With Different Stocking Densities. Front. Microbiol. 2018, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.M.; Chen, J.Z.; Meng, S.L.; Song, C.; Qiu, L.P.; Hu, G.D.; Xu, P. Characterization of microbial communities in intensive GIFT tilapia (Oreochromis niloticus) pond systems during the peak period of breeding. Aquac. Res. 2017, 48, 459–472. [Google Scholar] [CrossRef]
- Larsson, J.; Folke, C.; Kautsky, N. Ecological Limitations And Appropriation Of Ecosystem Support By Shrimp Farming In Colombia. Environ. Manag. 1994, 18, 663–676. [Google Scholar] [CrossRef]
- Troell, M.; Ronnback, P.; Halling, C.; Kautsky, N.; Buschmann, A. Ecological engineering in aquaculture: Use of seaweeds for removing nutrients from intensive mariculture. J. Appl. Phycol. 1999, 11, 89–97. [Google Scholar] [CrossRef]
- Bergero, D.; Forneris, G.; Palmegiano, G.B.; Zoccarato, I.; Gasco, L.; Sicuro, B. A description of ammonium content of output waters from trout farms in relation to stocking density and flow rates. Ecol. Eng. 2001, 17, 451–455. [Google Scholar] [CrossRef]
- Cohen, J.M.; Samocha, T.M.; Fox, J.M.; Gandy, R.L.; Lawrence, A.L. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquac. Eng. 2005, 32, 425–442. [Google Scholar] [CrossRef]
- Krummenauer, D.; Poersch, L.H.; Foes, G.; Lara, G.; Wasielesky, W. Survival and growth of Litopenaeus vannamei reared in Bft System under different water depths. Aquaculture 2016, 465, 94–99. [Google Scholar] [CrossRef]
- Montoya, R.A.; Lawrence, A.L.; Grant, W.E.; Velasco, M. Simulation of phosphorus dynamics in an intensive shrimp culture system: Effects of feed formulations and feeding strategies. Ecol. Model. 2000, 129, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Tovar, A.; Moreno, C.; Manuel-Vez, M.P.; Garcia-Vargas, M. Environmental impacts of intensive aquaculture in marine waters. Water Res. 2000, 34, 334–342. [Google Scholar] [CrossRef]
- Ray, A.J.; Seaborn, G.; Leffler, J.W.; Wilde, S.B.; Lawson, A.; Browdy, C.L. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 2010, 310, 130–138. [Google Scholar] [CrossRef]
- Primavera, J.H.; Lavillapitogo, C.R.; Ladja, J.M.; Delapena, M.R. A Survey Of Chemical And Biological Products Used In Intensive Prawn Farms In The Philippines. Mar. Pollut. Bull. 1993, 26, 35–40. [Google Scholar] [CrossRef]
- Alongi, D.M.; Dixon, P.; Johnston, D.J.; Van Tien, D.; Xuan, T.T. Pelagic processes in extensive shrimp ponds of the Mekong delta, Vietnam. Aquaculture 1999, 175, 121–141. [Google Scholar] [CrossRef]
- Gonzalez-Romero, M.A.; Hernandez-Llamas, A.; Ruiz-Velazco, J.M.J.; Plascencia-Cuevas, T.N.; Nieto-Navarro, J.T. Stochastic bio-economic optimization of pond size for intensive commercial production of whiteleg shrimp Litopenaeus vannamei. Aquaculture 2014, 433, 496–503. [Google Scholar] [CrossRef]
- Neori, A.; Shpigel, M.; Guttman, L.; Israel, A. Development of Polyculture and Integrated Multi—Trophic Aquaculture (IMTA) in Israel: A Review. Isr. J. Aquac.-Bamidgeh 2017, 69, 19. [Google Scholar]
- Twarowska, J.G.; Westerman, P.W.; Losordo, T.M. Water treatment and waste characterization evaluation of an intensive recirculating fish production system. Aquac. Eng. 1997, 16, 133–147. [Google Scholar] [CrossRef]
- Jirasek, J.; Mares, J.; Palikova, M. Haematological and biochemical indices of blood in wels (Silurus glanis L.) from intensive aquaculture. Acta Vet. BRNO 1998, 67, 227–233. [Google Scholar] [CrossRef]
- Kinne, P.N.; Samocha, T.M.; Jones, E.R.; Browdy, C.L. Characterization of intensive shrimp pond effluent and preliminary studies on biofiltration. N. Am. J. Aqualcult. 2001, 63, 25–33. [Google Scholar] [CrossRef]
- Lefebvre, S.; Bacher, C.; Meuret, A.; Hussenot, J. Modeling approach of nitrogen and phosphorus exchanges at the sediment-water interface of an intensive fishpond system. Aquaculture 2001, 195, 279–297. [Google Scholar] [CrossRef]
- Borges, M.T.; Morais, A.; Castro, P.M.L. Performance of outdoor seawater treatment systems for recirculation in an intensive turbot (Scophthalmus maximus) farm. Aquac. Int. 2003, 11, 557–570. [Google Scholar] [CrossRef]
- Asami, H.; Aida, M.; Watanabe, K. Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl. Environ. Microbiol. 2005, 71, 2925–2933. [Google Scholar] [CrossRef] [Green Version]
- Bricknell, I.R.; Bron, J.E.; Bowden, T.J. Diseases of gadoid fish in cultivation: A review. ICES J. Mar. Sci. 2006, 63, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Dahle, G.; Jorstad, K.E.; Rusaas, H.E.; Ottera, H. Genetic characteristics of broodstock collected from four Norwegian coastal cod (Gadus morhua) populations. ICES J. Mar. Sci. 2006, 63, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Madison, B.N.; Wang, Y.X.S. Haematological responses of acute nitrite exposure in walleye (Sander vitreus). Aquat. Toxicol. 2006, 79, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Mantzavrakos, E.; Kornaros, M.; Lyberatos, G.; Kaspiris, P. Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment. Desalination 2007, 210, 110–124. [Google Scholar] [CrossRef]
- Belton, B.; Little, D. The development of aquaculture in Central Thailand: Domestic demand versus export-led production. J. Agrar. Chang. 2008, 8, 123–143. [Google Scholar] [CrossRef]
- Dulic, Z.; Subakov-Simic, G.; Ciric, M.; Relic, R.; Lakic, N.; Stankovic, M.; Markovic, Z. Water Quality In Semi-Intensive Carp Production System Using Three Different Feeds. Bulg. J. Agric. Sci. 2010, 16, 266–274. [Google Scholar]
- Santander-De Leon, S.M.S.; San Diego-McGlone, M.L.; Reichardt, W. Impact of polychaete infauna on enzymatic protein degradation in marine sediments affected by intensive milkfish farming. Aquac. Res. 2010, 41, e844–e850. [Google Scholar] [CrossRef]
- Vallod, D.; Sarrazin, B. Water quality characteristics for draining an extensive fish farming pond. Hydrol. Sci. J.-J. Sci. Hydrol. 2010, 55, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Perez-Ruzafa, A.; Marcos, C. Fisheries in coastal lagoons: An assumed but poorly researched aspect of the ecology and functioning of coastal lagoons. Estuar. Coast. Shelf Sci. 2012, 110, 15–31. [Google Scholar] [CrossRef]
- Castine, S.A.; Paul, N.A.; Magnusson, M.; Bird, M.I.; de Nys, R. Algal bioproducts derived from suspended solids in intensive land-based aquaculture. Bioresour. Technol. 2013, 131, 113–120. [Google Scholar] [CrossRef]
- Gradil, A.M.; Wright, G.M.; Wadowska, D.W.; Fast, M.D. Ontogeny of the immune system in Acipenserid juveniles. Dev. Comp. Immunol. 2014, 44, 303–314. [Google Scholar] [CrossRef]
- Pulido-Calvo, I.; Gutierrez-Estrada, J.C.; Diaz-Rubio, E.; de la Rosa, I. Assisted management of water exchange in traditional semi-intensive aquaculture ponds. Comput. Electron. Agric. 2014, 101, 128–134. [Google Scholar] [CrossRef]
- Karlo, A.; Ziembinska-Buczynska, A.; Pilarczyk, M.; Surmacz-Gorska, J. Molecular Monitoring Of Bacterial And Microalgal Biocenoses’ Biodiversity In High Loaded Farming Ponds. Ecol. Chem. Eng. S 2015, 22, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, L.R.; Ketola, T.; Laanto, E.; Kinnula, H.; Bamford, J.K.H.; Penttinen, R.; Mappes, J. Intensive aquaculture selects for increased virulence and interference competition in bacteria. Proc. R. Soc. B-Biol. Sci. 2016, 283, 10. [Google Scholar] [CrossRef]
- Urbina, M.A. Temporal variation on environmental variables and pollution indicators in marine sediments under sea Salmon farming cages in protected and exposed zones in the Chilean inland Southern Sea. Sci. Total Environ. 2016, 573, 841–853. [Google Scholar] [CrossRef]
- Martinez, P. Genomics advances for boosting aquaculture breeding programs in Spain. Aquaculture 2017, 472, 4–7. [Google Scholar] [CrossRef]
- Liu, H.; Su, J.L. Vulnerability of China’s nearshore ecosystems under intensive mariculture development. Environ. Sci. Pollut. Res. 2017, 24, 8957–8966. [Google Scholar] [CrossRef] [Green Version]
- Hollenbeck, C.M.; Johnston, I.A. Genomic Tools and Selective Breeding in Molluscs. Front. Genet. 2018, 9, 15. [Google Scholar] [CrossRef]
- Kaminski, A.M.; Genschick, S.; Kefi, A.S.; Kruijssen, F. Commercialization and upgrading in the aquaculture value chain in Zambia. Aquaculture 2018, 493, 355–364. [Google Scholar] [CrossRef]
- Wang, J.H.; Lu, J.; Zhang, Y.X.; Wu, J.; Zhang, C.; Yu, X.B.; Zhang, Z.H.; Liu, H.; Wang, W.H. High-throughput sequencing analysis of the microbial community in coastal intensive mariculture systems. Aquac. Eng. 2018, 83, 93–102. [Google Scholar] [CrossRef]
- Ertor, I.; Ortega-Cerda, M. The expansion of intensive marine aquaculture in Turkey: The next-to-last commodity frontier? J. Agrar. Chang. 2019, 19, 337–360. [Google Scholar] [CrossRef]
- Fast, A.W. Marine Shrimp Pond Growout Conditions And Strategies—A Review And Prognosis. Rev. Aquat. Sci. 1991, 3, 357–399. [Google Scholar]
- Ondra, R.; Jirasek, J. The effect of feed mixtures with different protein and fat contents on production and chemical composition of the body of juvenile African catfish (Clarias gariepinus). Czech J. Anim. Sci. 2000, 45, 277–284. [Google Scholar]
APIS | Functions Involved | Descriptions | |
---|---|---|---|
0 | Extensive | Only the output functions ‘harvest’ and at least one design solution (placement or structural) of a production function. | Extensive system can use structural or environmental (including placement) designs to solve one or more of treatment functions |
1 | The output function ‘harvest’ and at least one of the input functions or output function of ‘preventing escapes‘. No treatment functions. | ||
2 | At least ‘stocking’, and either ‘feeding’ or ‘fertilizing’ and ‘harvest’, other inputs than ‘providing light’ are optional along with output function of ‘preventing escapes’. No treatment functions. | ||
3 | Semi- Intensive | The input function of ‘stocking’, and either ‘feeding’ or ‘fertilizing’ and the output function of ‘harvesting’. The other input and output functions are optional. These systems have at least one treatment function. | Semi-intensive system can use structural or environmental (including placement) designs to solve one or more of treatment functions |
4 | The input function of ‘stocking‘, and either ‘feeding‘ or ‘fertilizing´ and the output function of ‘harvesting‘. These systems have at least one of the treatment functions of ‘Controlling DO and CO2’, ‘Controlling organic matter’, ‘Controlling nitrogen compounds’ and ‘Controlling solids’. The other functions are optional. | ||
5 | Intensive | The input functions of ‘supplying water‘, ‘stocking‘ and ‘feeding‘, the treatment functions of ‘Controlling DO and CO2’, ‘Controlling organic matter’, ‘Controlling nitrogen compounds’ and ‘Controlling solids’ and the output function of ‘harvesting‘. All other functions are optional. | Intensive systems mostly solve treatment functions explicitly, not through design only. |
6 | the input functions of ‘supplying water‘, ‘stocking‘ and ‘feeding‘, the treatment functions of ‘Controlling DO and CO2’, ‘Controlling organic matter’, ‘Controlling nitrogen compounds’ and ‘Controlling solids’ and the output function of ‘harvesting‘. At least one of the other output functions is used. All other functions are optional. | ||
7 | the input functions of ‘supplying water‘, ‘stocking‘ and ‘feeding‘, use all of the treatment functions and the output function of ‘harvesting‘. At least one of the other output functions is used. All other functions are optional. |
APIS | Input Functions | Treatment Functions | Output Functions | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Supplying Water | Stocking | Feeding | Fertilizing | Providing light | Controlling Temperature | Controlling Solids | Controlling DO and CO2 | Controlling pH | Controlling N Compounds | Controlling Matter | Controlling P Compounds | Controlling Metals | Preventing Diseases | Controlling Disease Outbreaks | Harvesting | Process effluent Water Process Effluent Water | Process solid Waste | Controlling GHG Emission | Preventing Escapes | |
0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | x | - | - | - | - |
1 | a1 | a1 | a1 | a1 | - | - | - | - | - | - | - | - | - | - | - | x | - | - | - | a1 |
2 | o | x | a1 | a1 | - | - | - | - | - | - | - | - | - | - | - | x | - | - | - | o |
3 | o | x | a1 | a1 | o | a2 | a2 | a2 | a2 | a2 | a2 | a2 | a2 | a2 | a2 | x | o | o | o | o |
4 | o | x | a1 | a1 | o | o | a2 | a2 | o | a2 | a2 | o | o | o | o | x | o | o | o | o |
5 | x | x | x | o | o | o | x | x | o | x | x | o | o | o | o | x | o | o | o | o |
6 | x | x | x | o | o | o | x | x | o | x | x | o | o | o | o | x | a1 | a1 | a1 | a1 |
7 | x | x | x | o | o | x | x | x | x | x | x | x | x | x | x | x | a1 | a1 | a1 | a1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oddsson, G.V. A Definition of Aquaculture Intensity Based on Production Functions—The Aquaculture Production Intensity Scale (APIS). Water 2020, 12, 765. https://doi.org/10.3390/w12030765
Oddsson GV. A Definition of Aquaculture Intensity Based on Production Functions—The Aquaculture Production Intensity Scale (APIS). Water. 2020; 12(3):765. https://doi.org/10.3390/w12030765
Chicago/Turabian StyleOddsson, Guðmundur Valur. 2020. "A Definition of Aquaculture Intensity Based on Production Functions—The Aquaculture Production Intensity Scale (APIS)" Water 12, no. 3: 765. https://doi.org/10.3390/w12030765
APA StyleOddsson, G. V. (2020). A Definition of Aquaculture Intensity Based on Production Functions—The Aquaculture Production Intensity Scale (APIS). Water, 12(3), 765. https://doi.org/10.3390/w12030765