Simplified Analysis of Measurement Data from A Rapid E. coli qPCR Method (EPA Draft Method C) Using A Standardized Excel Workbook
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. qPCR Analyses
2.3. Standard Curves in the Draft Method C Excel Workbook
2.4. Data Analysis
2.4.1. WLR and Bayesian MSC Standard Curve Model Comparisons
2.4.2. Comparison of Test Sample E. coli Estimates by the Two Models
2.4.3. Impact of Acceptance Criteria on WLR Intercept and Slope Estimates
3. Results
3.1. Bayesian MSC and WLR Standard Curve Model Comparisons
3.2. Comparison of Test Sample E. coli Estimates by the Two Models
3.3. Impact of Acceptance Criteria on WLR Intercept and Slope Estimates
4. Discussion and Conclusions
4.1. WLR and Bayesian MSC Standard Curve Model Comparisons
4.2. Comparison of Test Sample E. coli Estimates by the Two Models
4.3. Impact of Acceptance Criteria on WLR Intercept and Slope Estimates
4.4. Draft Method C Implementation
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Health Effects Criteria for Fresh Recreational Waters. Available online: https://permanent.access.gpo.gov/lps68259/frc.pdf (accessed on 8 March 2020).
- Wade, T.J.; Calderon, R.L.; Sams, E.; Beach, M.; Brenner, K.P.; Williams, A.H.; Dufour, A.P. Rapidly Measured Indicators of Recreational Water Quality Are Predictive of Swimming-Associated Gastrointestinal Illness. Environ. Health Perspect. 2006, 114, 24–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Environmental Quality. Michigan Public Health Code Part 4. Water Quality Standards. Available online: https://www.michigan.gov/documents/deq/wrd-rules-part4_521508_7.pdf (accessed on 7 November 2019).
- Recreational Water Quality Criteria. Available online: https://www.epa.gov/sites/production/files/2015-10/documents/rwqc2012.pdf (accessed on 30 October 2019).
- Lavender, J.S.; Kinzelman, J.L. A Cross Comparison of QPCR to Agar-Based or Defined Substrate Test Methods for the Determination of Escherichia Coli and Enterococci in Municipal Water Quality Monitoring Programs. Water Res. 2009, 43, 4967–4979. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Hageleit, M. Validities of mRNA Quantification Using Recombinant RNA and Recombinant DNA External Calibration Curves in Real-time RT-PCR. Biotechnol. Lett. 2001, 23, 275–282. [Google Scholar] [CrossRef]
- Rutledge, R.G. Mathematics of Quantitative Kinetic PCR and the Application of Standard Curves. Nucleic Acids Res. 2003, 31, e93. [Google Scholar] [CrossRef] [PubMed]
- Sivaganesan, M.; Seifring, S.; Varma, M.; Haugland, R.A.; Shanks, O.C. A Bayesian Method for Calculating Real-Time Quantitative PCR Calibration Curves Using Absolute Plasmid DNA Standards. BMC Bioinf. 2008, 9, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivaganesan, M.; Aw, T.G.; Briggs, S.; Dreelin, E.; Aslan, A.; Dorevitch, S.; Shrestha, A.; Isaacs, N.; Kinzelman, J.; Kleinheinz, G.; et al. Standardized Data Quality Acceptance Criteria for a Rapid Escherichia Coli QPCR Method (Draft Method C) for Water Quality Monitoring at Recreational Beaches. Water Res. 2019, 156, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Shanks, O.C.; Kelty, C.A.; Oshiro, R.; Haugland, R.A.; Madi, T.; Brooks, L.; Field, K.G.; Sivaganesan, M. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods. Appl. Environ. Microbiol. 2016, 82, 2773–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aw, T.G.; Sivaganesan, M.; Briggs, S.; Dreelin, E.; Aslan, A.; Dorevitch, S.; Shrestha, A.; Isaacs, N.; Kinzelman, J.; Kleinheinz, G.; et al. Evaluation of Multiple Laboratory Performance and Variability in Analysis of Recreational Freshwaters by a Rapid Escherichia Coli QPCR Method (Draft Method C). Water Res. 2019, 156, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Chern, E.C.; Siefring, S.; Paar, J.; Doolittle, M.; Haugland, R.A. Comparison of Quantitative PCR Assays for Escherichia Coli Targeting Ribosomal RNA and Single Copy Genes. Lett. Appl. Microbiol. 2011, 52, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Sivaganesan, M.; Varma, M.; Siefring, S.; Haugland, R. Quantification of Plasmid DNA Standards for U.S. EPA Fecal Indicator Bacteria QPCR Methods by Droplet Digital PCR Analysis. J. Microbiol. Methods 2018, 152, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.D.; Weisberg, S. Diagnostics for Heteroscedasticity in Regression. Biometrika 1983, 70, 1–10. [Google Scholar] [CrossRef]
- Baker, M. QPCR: Quicker and Easier but Don’t Be Sloppy. Nat. Methods 2011, 8, 207–212. [Google Scholar] [CrossRef]
- Sivaganesan, M.; Haugland, R.A.; Chern, E.C.; Shanks, O.C. Improved Strategies and Optimization of Calibration Models for Real-Time PCR Absolute Quantification. Water Res. 2010, 44, 4726–4735. [Google Scholar] [CrossRef] [PubMed]
- Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; et al. Interlaboratory Comparison of Real-Time Pcr Protocols for Quantification of General Fecal Indicator Bacteria. Environ. Sci. Technol. 2012, 46, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Converse, R.R.; Blackwood, A.D.; Kirs, M.; Griffith, J.F.; Noble, R.T. Rapid QPCR-Based Assay for Fecal Bacteroides Spp. as a Tool for Assessing Fecal Contamination in Recreational Waters. Water Res. 2009, 43, 4828–4837. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.T.; Blackwood, A.D.; Griffith, J.F.; McGee, C.D.; Weisberg, S.B. Comparison of Rapid Quantitative PCR-Based and Conventional Culture-Based Methods for Enumeration of Enterococcus Spp. and Escherichia Coli in Recreational Waters. Appl. Environ. Microbiol. 2010, 76, 7437–7443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Laboratory | Location | WLR vs. MSC | Test Sample Analysis | Acceptance Criteria Impact (2016–2018) |
---|---|---|---|---|
Central Michigan District Health Dept., Assurance Water Laboratory | Gladwin, MI 48624, USA | x | x | |
City of Racine Public Health Dept. | Racine, WI 53403, USA | x | ||
Ferris State University, Shimadzu Core Laboratory | Big Rapids, MI 49307, USA | x | x | x |
Georgia Southern University, Dept. of Environmental Health Sciences | Statesboro, GA 30458, USA | x | ||
Grand Valley State University, Annis Water Resources Institute | Muskegon, MI 49441, USA | x | x | x |
Health Dept. of Northwest Michigan, Northern Michigan Regional Laboratory | Gaylord, MI 49735, USA | x | ||
Kalamazoo County Health and Community Services Laboratory | Kalamazoo, MI 49001, USA | x | x | x |
Lake Superior State University, Environmental Analysis Laboratory | Sault St. Marie, MI 49783, USA | x | x | x |
Marquette Area Wastewater Facility | Marquette, MI 49855, USA | x | x | |
Michigan State University, Department of Fisheries and Wildlife | East Lansing, MI 48824, USA | x | ||
Northeast Ohio Regional Sewer District, Environmental and Maintenance Services Center | Cuyahoga Heights, OH 44125, USA | x | ||
Oakland County Health Division Laboratory | Pontiac, MI 48341, USA | x | x | x |
Oakland University, HEART Laboratory | Rochester, MI 48309, USA | x | x | x |
U.S. EPA National Exposure Research Laboratory | Cincinnati, OH 45268, USA | x | x | x |
United States Geological Survey, Upper Midwest Water Science Center | Lansing, MI 48911, USA | x | x | |
U.S. National Parks Service, Sleeping Bear Dunes Water Laboratory | Empire, MI 49360, USA | x | ||
Saginaw County Health Dept. Laboratory | Saginaw, MI 48302, USA | x | ||
Saginaw Valley State University, Dept. of Chemistry | University Center, MI 48710, USA | x | x | x |
University of Illinois at Chicago, School of Public Health | Chicago, IL 60612, USA | x | ||
University of North Carolina at Chapel Hill, Institute of Marine Sciences | Morehead City, NC 28557, USA | x | ||
University of Wisconsin-Oshkosh, Environmental Research Laboratory | Oshkosh, WI 54901, USA | x |
Test Sample ID | Test Sample Type | Test Sample Concentration(E. coli/100 mL) |
---|---|---|
13 | Ambient | 86,596 |
14 | Low Dilution | 20,535 |
15 | High Dilution | 2371 |
16 | Ambient | Not Determined + |
17 | Low Spike | 200 * |
18 | High Spike | 800 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lane, M.J.; McNair, J.N.; Rediske, R.R.; Briggs, S.; Sivaganesan, M.; Haugland, R. Simplified Analysis of Measurement Data from A Rapid E. coli qPCR Method (EPA Draft Method C) Using A Standardized Excel Workbook. Water 2020, 12, 775. https://doi.org/10.3390/w12030775
Lane MJ, McNair JN, Rediske RR, Briggs S, Sivaganesan M, Haugland R. Simplified Analysis of Measurement Data from A Rapid E. coli qPCR Method (EPA Draft Method C) Using A Standardized Excel Workbook. Water. 2020; 12(3):775. https://doi.org/10.3390/w12030775
Chicago/Turabian StyleLane, Molly J., James N. McNair, Richard R. Rediske, Shannon Briggs, Mano Sivaganesan, and Richard Haugland. 2020. "Simplified Analysis of Measurement Data from A Rapid E. coli qPCR Method (EPA Draft Method C) Using A Standardized Excel Workbook" Water 12, no. 3: 775. https://doi.org/10.3390/w12030775
APA StyleLane, M. J., McNair, J. N., Rediske, R. R., Briggs, S., Sivaganesan, M., & Haugland, R. (2020). Simplified Analysis of Measurement Data from A Rapid E. coli qPCR Method (EPA Draft Method C) Using A Standardized Excel Workbook. Water, 12(3), 775. https://doi.org/10.3390/w12030775