A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers
Abstract
:1. Introduction
2. Study Area and Materials
3. Methodology
3.1. Non-Linear Autoregressive Networks with Exogenous Input
3.1.1. Network Architecture
3.1.2. Training Algorithms
3.2. Data Preprocessing
3.3. Autocorrelation and Cross-Correlation Analysis
3.4. Model Validation and Performance Assessment
4. Results and Discussion
4.1. Modeling Results
4.2. Comparisons with Previous Studies
5. Summary and Conclusions
Funding
Conflicts of Interest
References
- Bear, J.; Cheng, A.H.-D. Modeling Groundwater Flow and Contaminant Transport; Springer Science & Business Media: Berlin, Germany, 2010; Volume 23, ISBN 1402066821. [Google Scholar]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic Press: Cambridge, MA, USA, 2015; ISBN 0080916384. [Google Scholar]
- Rajaee, T.; Boroumand, A. Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models. Appl. Ocean Res. 2015, 53, 208–217. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Linares-Rodriguez, A.; Lara-Fanego, V.; Pozo-Vazquez, D.; Tovar-Pescador, J. One-day-ahead streamflow forecasting using artificial neural networks and a meteorological mesoscale model. J. Hydrol. Eng. 2015, 20, 5015001. [Google Scholar] [CrossRef]
- Liong, S.-Y.; Lim, W.-H.; Paudyal, G.N. River stage forecasting in Bangladesh: Neural network approach. J. Comput. Civ. Eng. 2000, 14, 1–8. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Raheli, B.; Aalami, M.T.; El-Shafie, A.; Ghorbani, M.A.; Deo, R.C. Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat River. Environ. Earth Sci. 2017, 76, 503. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Gosain, A.K.; Ramasastri, K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16, 1325–1330. [Google Scholar] [CrossRef]
- Jha, M.K.; Sahoo, S. Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater. Hydrol. Process. 2015, 29, 671–691. [Google Scholar] [CrossRef]
- Izady, A.; Davary, K.; Alizadeh, A.; Nia, A.M.; Ziaei, A.N.; Hasheminia, S.M. Application of NN-ARX model to predict groundwater levels in the Neishaboor Plain, Iran. Water Resour. Manag. 2013, 27, 4773–4794. [Google Scholar] [CrossRef]
- Chang, F.-J.; Chang, L.-C.; Huang, C.-W.; Kao, I.-F. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J. Hydrol. 2016, 541, 965–976. [Google Scholar] [CrossRef]
- Wunsch, A.; Liesch, T.; Broda, S. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J. Hydrol. 2018, 567, 743–758. [Google Scholar] [CrossRef]
- Guzman, S.M.; Paz, J.O.; Tagert, M.L.M. The use of NARX neural networks to forecast daily groundwater levels. Water Resour. Manag. 2017, 31, 1591–1603. [Google Scholar] [CrossRef]
- Al-Sanad, H.A.; Shaqour, F.M. Geotechnical implications of subsurface water rise in Kuwait. Eng. Geol. 1991, 31, 59–69. [Google Scholar] [CrossRef]
- Hamdan, L.; Mukhopadhyay, A. Numerical Simulation of Subsurface-Water Rise in Kuwait City a. Groundwater 1991, 29, 93–104. [Google Scholar] [CrossRef]
- Mossaad, M.; Gutler, J.; Ghoneim, H.; Senay, Y.; El-Nahhs, F. Implementation of a geotechnical monitoring program in a pilot drainage project in Kuwait. In Proceedings of the Second International Conference on Groundwater Level in Urbanized Areas, Mansoura, Egypt, 7–8 November 1999. [Google Scholar]
- Székely, F. Numerical modeling of drainage schemes in layered formations: A Kuwait City case study. Groundwater 1999, 37, 879–883. [Google Scholar] [CrossRef]
- Senay, Y. Water Level Fluctuation Analysis in the Residential Areas of Kuwait City during August 1990 - July 1991; Ministry of Electricity and Water: Kuwait City, Kuwait, 1991; Unpublished Report.
- Senay, Y.; Hamdan, L.; Yacoubi, A. Study of the Subsurface Water Rise in the Residential Areas of Kuwait, Vol 3: Hydrogeology; Kuwait Institute for Scientific Research Report No. KISR2227; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 1987. [Google Scholar]
- Sayed, S.A.S.; Saeedy, H.S.; Székely, F. Hydraulic parameters of a multilayered aquifer system in Kuwait City. J. Hydrol. 1992, 130, 49–70. [Google Scholar] [CrossRef]
- Almedeij, J.; Al-Ruwaih, F. Periodic behavior of groundwater level fluctuations in residential areas. J. Hydrol. 2006, 328, 677–684. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Abdulkadir, S.J.; Yong, S.-P. Scaled UKF–NARX hybrid model for multi-step-ahead forecasting of chaotic time series data. Soft Comput. 2015, 19, 3479–3496. [Google Scholar] [CrossRef]
- Lee, W.-K.; Tuan Resdi, T.A. Simultaneous hydrological prediction at multiple gauging stations using the NARX network for Kemaman catchment, Terengganu, Malaysia. Hydrol. Sci. J. 2016, 61, 2930–2945. [Google Scholar] [CrossRef] [Green Version]
- Khaki, M.; Yusoff, I.; Islami, N. Application of the Artificial Neural Network and Neuro-fuzzy System for Assessment of Groundwater Quality. CLEAN–Soil Air Water 2015, 43, 551–560. [Google Scholar] [CrossRef]
- Samarasinghe, S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition; Auerbach Publications: New York, NY, USA, 2016; ISBN 0429115784. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995; ISBN 0198538642. [Google Scholar]
- Yu, H.; Wilamowski, B.M. Levenberg-marquardt training. Ind. Electron. Handb. 2011, 5, 1. [Google Scholar]
- Aldrich, J. Correlations genuine and spurious in Pearson and Yule. Stat. Sci. 1995, 10, 364–376. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Newbold, P. Spurious regressions in econometrics. J. Econom. 1974, 2, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Zheng, C. Signals of short-term climatic periodicities detected in the groundwater of North China Plain. Hydrol. Process. 2016, 30, 515–533. [Google Scholar] [CrossRef]
- Ghanbari, R.N.; Bravo, H.R. Coherence among climate signals, precipitation, and groundwater. Groundwater 2011, 49, 476–490. [Google Scholar] [CrossRef]
- Bergmeir, C.; Benítez, J.M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. 2012, 191, 192–213. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J. V River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhang, Y.; Guo, Q.; Zhao, X. Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions. Water Resour. Manag. 2014, 28, 5297–5317. [Google Scholar] [CrossRef]
- Nourani, V.; Mousavi, S. Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. J. Hydrol. 2016, 536, 10–25. [Google Scholar] [CrossRef]
- Yang, Q.; Hou, Z.; Wang, Y.; Zhao, Y.; Delgado, J. A comparative study of shallow groundwater level simulation with WA–ANN and ITS model in a coastal island of south China. Arab. J. Geosci. 2015, 8, 6583–6593. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Moslemi, K.; Karami, G. Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resour. Manag. 2014, 28, 5433–5446. [Google Scholar] [CrossRef]
- Kouziokas, G.N.; Chatzigeorgiou, A.; Perakis, K. Multilayer feed forward models in groundwater level forecasting using meteorological data in public management. Water Resour. Manag. 2018, 32, 5041–5052. [Google Scholar] [CrossRef]
- Asefa, T.; Wanakule, N.; Adams, A. Field-Scale Application of Three Types of Neural Networks to Predict Ground-Water Levels 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1245–1256. [Google Scholar] [CrossRef]
- Khalil, B.; Broda, S.; Adamowski, J.; Ozga-Zielinski, B.; Donohoe, A. Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models. Hydrogeol. J. 2015, 23, 121–141. [Google Scholar] [CrossRef]
- Jeong, J.; Park, E. Comparative applications of data-driven models representing water table fluctuations. J. Hydrol. 2019, 572, 261–273. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Lan, S.; Wang, H. A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resour. Manag. 2016, 30, 375–391. [Google Scholar] [CrossRef]
- Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol. 2019, 572, 336–351. [Google Scholar] [CrossRef]
ID | Area | Easting (m) | Northing (m) | Data Period | Ground Level Above m.s.l. (m) | Water Table Depth Range (m) |
---|---|---|---|---|---|---|
BN-1A | Bayan | 503,750.6 | 243,098.7 | 1992–2001 | 27.74 | 8.42–12.23 |
NZ-1A | Nuzha | 499,402.2 | 247,349.0 | 1992–2000 | 16.45 | 2.68–4.07 |
JB-1A | Jabriya | 502,472.2 | 244,781.0 | 1993–2002 | 23.00 | 4.52–6.08 |
HL-1A | Hawally | 500,673.1 | 247,010.4 | 1993–2002 | 20.06 | 3.76–5.60 |
Auto Correlation for Remainder Data | Cross Correlation with Temperature | |||||||
---|---|---|---|---|---|---|---|---|
Well | 1st lag | 2nd lag | 3rd lag | 4th lag | 5th lag | 6th lag | Magnitude | Lag |
BN-1A | 0.92 | 0.80 | 0.65 | 0.5 | - | - | −0.48 | 3rd lag |
NZ-1A | 0.89 | 0.75 | 0.57 | - | - | - | −0.37 | 2nd lag |
JB-1A | 0.93 | 0.85 | 0.75 | 0.65 | 0.56 | 0.49 | −0.33 | 3rd lag |
HL-1A | 0.91 | 0.77 | 0.62 | 0.48 | - | - | −0.35 | 4th lag |
Well | Validation Round | R2 | MAE (m) | NASH a | ID b | FD c | HL d |
---|---|---|---|---|---|---|---|
BN-1A | R1 | 0.971 | 0.063 | 0.964 | 1:3 | 1:4 | 30 |
R2 | 0.992 | 0.026 | 0.992 | ||||
R3 | 0.994 | 0.049 | 0.993 | ||||
NZ-1A | R1 | 0.762 | 0.072 | 0.735 | 1:2 | 1:3 | 30 |
R2 | 0.967 | 0.042 | 0.966 | ||||
R3 | 0.966 | 0.048 | 0.966 | ||||
JB-1A | R1 | 0.887 | 0.020 | 0.823 | 1:3 | 1:6 | 70 |
R2 | 0.987 | 0.010 | 0.986 | ||||
R3 | 0.987 | 0.032 | 0.985 | ||||
HL-1A | R1 | 0.765 | 0.052 | 0.643 | 1:4 | 1:4 | 70 |
R2 | 0.953 | 0.050 | 0.949 | ||||
R3 | 0.973 | 0.065 | 0.964 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsumaiei, A.A. A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers. Water 2020, 12, 820. https://doi.org/10.3390/w12030820
Alsumaiei AA. A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers. Water. 2020; 12(3):820. https://doi.org/10.3390/w12030820
Chicago/Turabian StyleAlsumaiei, Abdullah A. 2020. "A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers" Water 12, no. 3: 820. https://doi.org/10.3390/w12030820
APA StyleAlsumaiei, A. A. (2020). A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers. Water, 12(3), 820. https://doi.org/10.3390/w12030820