Evaluating the Impact of Climate Change on Paddy Water Balance Using APEX-Paddy Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experiment Field Management
2.2. Model Selection and Setup
2.3. Model Calibration and Validation
2.4. Water Balance Model of Irrigated Paddy Field
2.5. Future Climate Change Scenarios
2.6. Changes Rates
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Evaluations for Retrospective Simulations of GCMs
3.3. Test of the Automatic Irrigation System
3.4. GCM Skills in Reproducing Surface Discharge
3.5. Future Change in Precipitation, Maximum and Minimum Temperature
3.6. Future Change in Evapotranspiration, Transpiration, and Evaporation
3.7. Future Change in Surface Discharge
3.8. Future Change in Percolation and Deep Percolation
3.9. Future Change in Irrigation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inter-Governmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of IPCC; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Trenberth, K.E. Changes in precipitation with climate change. Clim Res. 2013, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Dickinson, R.E.; Liang, S. Global Atmospheric Evaporative Demand over Land from 1973 to 2008. J. Clim. 2012, 25, 8353–8361. [Google Scholar] [CrossRef]
- Xu, C.Y.; Widen, E.; Halldin, S. Modelling hydrological consequences of climate change-progress and challenges. Adv. Atmos. Sci. 2005, 22, 789–797. [Google Scholar] [CrossRef]
- Fowler, H.J.; Kilsby, C.G. Using regional climate model data to simulate historical and future river flows in northwest England. Clim. Chang. 2007, 80, 337–367. [Google Scholar] [CrossRef]
- Hong, S.Y.; Kanamitsu, M. Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia Pac. J. Atmos. Sci. 2014, 50, 83–104. [Google Scholar] [CrossRef]
- Kang, S.; Hur, J.; Ahn, J.B. Statistical downscaling methods based on APCC multi-model ensemble for seasonal prediction over South Korea. Int. J. Climatol. 2014, 34, 3801–3810. [Google Scholar] [CrossRef]
- Lee, J.W.; Hong, S.Y. Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor Appl Climatol. 2014, 117, 667–677. [Google Scholar] [CrossRef]
- Brigode, P.; Oudin, L.; Perrin, C. Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? J Hydrol. 2013, 476, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Lespinas, F.; Ludwig, W.; Heussner, S. Hydrological and climatic uncertainties associated with modeling the impact of climate change on water resources of small Mediterranean coastal rivers. J Hydrol. 2014, 511, 403–422. [Google Scholar] [CrossRef]
- Robock, A.; Turco, R.P.; Harwell, M.A.; Ackerman, T.P.; Andressen, R.; Chang, H.S.; Sivakumar, M.V.K. Use of general circulation model output in the creation of climate change scenarios for impact analysis. Clim. Change 1993, 23, 293–335. [Google Scholar] [CrossRef]
- Claudia, T.; Reto, K. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A. 2007, 365, 2053–2075. [Google Scholar]
- Sperber, K.R.; Annamalai, H.; Kang, I.S.; Kitoh, A.; Moise, A.; Turner, A.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Ministry of Construction and Transportation, Republic of Korea (MOCT). Water Vision 2020; MOCT: Seoul, Korea, 2006.
- McKenney, M.S.; Rosenberg, N.J. Sensitivity of some potential evapotranspiration estimation methods to climate change. Agric. For. Meteorol. 1993, 64, 81–110. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California. Clim. Change 2007, 81, 19–38. [Google Scholar] [CrossRef]
- Jee, Y.K.; Lee, J.H.; Kim, S.D. Climate change impacts on agricultural water in Nakdong-river watershed. J. Korean Soc. Agricul. Eng. 2012, 54, 149–157. (in Korean). [Google Scholar]
- Chung, S.-O.; Rodríguez-Díaz, J.A.; Weatherhead, E.K.; Knox, J.W. Climate change impacts on water for irrigating paddy rice in South Korea. Irrig. Drain. 2011, 60, 263–273. [Google Scholar] [CrossRef]
- Frederick, K.D.; Major, D.C. Climate Change and Water Resources. Clim. Change 1997, 37, 7–23. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Vail Lance, W.; Lettenmaier, D.P. A distributed hydrology–vegetation model for complex terrain. Water Resour. Res. 1994, 30, 1665–1679. [Google Scholar] [CrossRef]
- Holsten, A.; Vetter, T.; Vohland, K. Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecol. Model. 2009, 220, 2076–2087. [Google Scholar] [CrossRef]
- Krysanova, V.; Hattermann, F.; Wechsung, F. Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment. Hydrol. Process. 2005, 19, 763–783. [Google Scholar] [CrossRef]
- Limousin, J.M.; Rambal, S.; Ourcival, J.M. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biol. 2009, 15, 2163–2175. [Google Scholar] [CrossRef]
- Chin, Y.M.; Park, S.W.; Kim, S.M.; Kang, M.S.; Kang, M.G. Nutrient loads estimation at paddy field using CREAMS-PADDY model. J. Korean Soc. Rural Plann. 2002, 8, 60–68, (In Korean with English Abstract). [Google Scholar]
- Chung, S.O.; Kim, H.S.; Kim, J.S. Model development for nutrient loading from paddy rice fields. Agric. Water Manag. 2003, 62, 1–17. [Google Scholar] [CrossRef]
- Jeon, J.H.; Yoon, C.G.; Donigian, A.S., Jr.; Jung, K.W. Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions. Agricult. Water Manag. 2007, 90, 75–86. [Google Scholar] [CrossRef]
- Leipprand, A.; Gerten, D. Global effects of doubled atmospheric CO2 content on evapotranspiration, soil moisture and runoff under potential natural vegetation. Hydrologic. Sci. J. 2006, 51, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.K.; Kim, M.K.; Jeong, J.; Choi, D.; Hur, S.O. Estimation of Crop Yield and Evapotranspiration in Paddy Rice withe Climate Change using APEX-Paddy Model. J. Korean Soc. Agricul. Eng. 2017a, 59, 27–42, (in Korean with English abstract). [Google Scholar]
- Choi, S.K.; Jeong, J.; Cho, J.; Hur, S.O.; Choi, D.; Kim, M.K. Assessing the Climate Change Impacts on Paddy Rice Evapotranspiration Considering Uncertainty. J. Clim. Change Res. 2018, 9, 143–156. [Google Scholar] [CrossRef]
- Kim, J.S.; Oh, S.Y.; Oh, K.Y. Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season. J. Hydrol 2005, 327, 128–139. [Google Scholar] [CrossRef]
- Hong, H.C.; Choi, H.C.; Hwang, H.G.; Kim, Y.G.; Moon, H.P.; Kim, H.Y.; Yea, J.D.; Shin, Y.S.; Choi, Y.H.; Cho, Y.C.; et al. A lodging-tolerance and dull rice cultivar ‘Baegjinju’. Korean J. Breed Sci. 2012, 44, 51–56, (in Korean with English Abstract). [Google Scholar]
- Williams, J.R.; Izaurralde, R.C. The APEX Model.; BRC Report No. 2005-02; Texas Agricultural Experiment Station, Texas Agricultural Extension Service, Texas A&M University: Temple, TX, USA, 2005. [Google Scholar]
- Williams, J.R.; Izaurralde, R.C. The APEX Model. In Watershed Models; Singh, V.P., Frevert, D.K., Eds.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Choi, S.K.; Jeong, J.; Kim, M.K. Simulating the Effects of Agricultural Management on Water Quality Dynamics in Rice Paddies for Sustainable Rice Production—Model Development and Validation. Water 2017b, 9, 869. [Google Scholar] [CrossRef] [Green Version]
- Steglich, E.M.; Jeong, J.; Williams, J.R. Agricultural Policy/Environmental eXtender Model.: User’s Manual; Version 1501; NRCS and AgriLife Research, Texas A&M System: Texas, TX, USA, 2016. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. ASAE 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Kan, G.; Hong, Y. Study on the Applicability of the Hargreaves Potential Evapotranspiration Estimation Method in CREST Distributed Hydrological Model (Version 3.0) Applications. Water 2018, 10, 1882. [Google Scholar] [CrossRef] [Green Version]
- Mockus, V. National Engineering Handbook Section 4, Hydrology; United States Department of Agriculture (USDA), Soil Conservation Service: Washington, DC, USA, 1972.
- Wang, X.; Jeong, J. APEX-CUTE 4 User Manual; Texas A&M AgriLife Research, Blackland Research and Extension Center, Texas A&M University: Temple, TX, USA, 2016. [Google Scholar]
- Tolson, B.A.; Shoemaker, C.A. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res. 2007, 43, W01413. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic, and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Mudgal, A.; Baffaut, C.; Anderson, S.H.; Sadler, E.J.; Thompson, A.L. Apex model assessment of variable landscapes on runoff and dissolved herbicides. Trans. ASABE 53 2010, 1047–1058. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Cho, J.; Song, J.H.; Song, I.; Choi, S.K.; Hwang, S. Evaluating the Performance of APEX-PADDY Model using the monitoring data of paddy fields in South Korea. J. Korean Soc. Agricul. Eng. 2019, 62, 1–16. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meeh, G.A. A summary of the CMIP5 experiment design. Available online: https://pcmdi.llnl.gov/mips/cmip5/Taylor_CMIP5_design.pdf (accessed on 24 May 2019).
- Cho, J.; Cho, W.; Jung, I. RSQM: Statistical Downscaling Toolkit for Climate Change Scenario Using Nonparametric Quantile Mapping. 2018. Available online: Cran.r-project.org/web/packages/rSQM/index.html (accessed on 24 May 2019).
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Kim, G. Impacts of Climate Change Scenarios on Non-Point Source Pollution in the Saemangeum Watershed, South Korea. Water 2019, 11, 1982. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.K. APEX-Paddy Model Development and Climate Change Impact Assessment for Paddy Rice. Ph.D. Thesis, Seoul National University, South Korea, 2019. [Google Scholar]
- Chen, J.; Brissette, F.P.; Leconte, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol. 2011, 401, 190–202. [Google Scholar] [CrossRef]
- Oh, S.G.; Suh, M.S.; Lee, Y.S.; Ahn, J.B.; Cha, D.H.; Lee, D.K.; Hong, S.Y.; Min, S.K.; Park, S.C.; Kang, H.S. Projections of high resolution climate change for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: Precipitation. Asia-Pac. J. Atmos. Sci. 2016, 52, 171–189. [Google Scholar] [CrossRef]
Operation | 2013 | 2014 | 2015 |
---|---|---|---|
Start irrigation | 8 June | 20 May | 17 May |
Fertilizer application | 11 June (N = 126 kg, P = 57 kg) | 25 May (N = 126 kg, P = 57 kg) | 20 May (N = 126 kg, P = 57 kg) |
Tillage operation | 12 June | 25 May | 20 May |
Transplanting | 13 June | 29 May | 28 May |
Irrigation ponding | 14 June | 30 May | 28 May |
Mid-term dry period | 7–21 July | 11–19 July | 26 June–30 July |
Harvesting | 21 October | 15 October | 15 October |
Period | Historical (1976–2005) (ppm) | 2010 (ppm) | 2040s (ppm) | 2070s (ppm) | |
---|---|---|---|---|---|
Scenario | |||||
RCP4.5 | 363.09 | 424.88 | 497.47 | 532.43 | |
RCP8.5 | 363.09 | 435.65 | 578.07 | 807.17 |
Model Name | Modeling Center | Resolution (Lon × Lat) |
---|---|---|
bcc-csm1-1 | Beijing Climate Center, China Meteorological Administration, China | 2.81° × 2.79° |
bcc-csm1-1-m | 1.13° × 1.12° | |
CanESM2 | Canadian Centre for Climate Modelling and Analysis, Canada | 2.81° × 2.79° |
CCSM4 | National Center for Atmospheric Research, USA | 1.25° × 0.94° |
CESM1-BGC | National Science Foundation, Department of Energy, National Center for Atmospheric Research, USA | 1.25° × 0.94° |
CESM1-CAM5 | ||
CMCC-CM | Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy | 0.75° × 0.75° |
CMCC-CMS | 1.88° × 1.86° | |
CNRM-CM5 | Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique, France | 1.41° × 1.40° |
CSIRO-Mk3-6-0 | Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence, Australia | 1.88° × 1.86° |
FGOALS-g2 | Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University, China | 2.81° × 3.05° |
FGOALS-s2 | Institute of Atmospheric Physics, Chinese Academy of Sciences, China | 2.81° × 1.66° |
GFDL-CM3 | Geophysical Fluid Dynamics Laboratory, USA | 2.50° × 2.00° |
GFDL-ESM2G | ||
GFDL-ESM2M | ||
HadGEM2-AO | National Institute of Meteorological Research/Korea Meteorological Administration, South Korea | 1.88° × 1.25° |
HadGEM2-CC | Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais), UK | 1.88° × 1.25° |
HadGEM2-ES | ||
inmcm4 | Institute of Numerical Mathematics, Russia | 2° × 1. 5° |
IPSL-CM5A-LR | Institut Pierre-Simon Laplace, France | 3.75° × 1.89° |
IPSL-CM5A-MR | 2.50° × 1.27° | |
IPSL-CM5B-LR | 3.75° × 1.89° | |
MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan | 1.41° × 1.40° |
MIROC-ESM | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and the National Institute for Environmental Studies, Japan | 2.81° × 2.79° |
MIROC-ESM-CHEM | ||
MPI-ESM-LR | Max Planck Institute for Meteorology (MPI-M), Germany | 1.88° × 1.86° |
MPI-ESM-MR | ||
MRI-CGCM3 | Meteorological Research Institute, Japan | 1.13° × 1.12° |
NorESM1-M | Norwegian Climate Centre, Norway | 2.50° × 1.89° |
Variable | Statistical Index | Calibration Period | Validation Period | ||
---|---|---|---|---|---|
2013 | 2014 | Entire Period | 2015 | ||
Q | R2 | 0.81 | 0.71 | 0.78 | 0.67 |
NSE | 0.87 | 0.40 | 0.65 | 0.74 | |
PBIAS (%) | −8.04 | 15 | 5.41 | 6.12% |
Water Balance Components | Evapotranspiration | Surface Discharge | Irrigation |
---|---|---|---|
MME of GCMs | 517.60(± 4.49) | 375.44 (± 18.1) | 633.57 (± 30.08) |
Observed | 533.84 | 382.25 | 613.25 |
PBIAS (%) | 3.04 | 1.78 | 3.31 |
Parameters | RCP4.5 | RCP8.5 | ||||||
---|---|---|---|---|---|---|---|---|
Historical | 2010s | 2040s | 2070s | Historical | 2010s | 2040s | 2070s | |
Precipitation (mm) | 861.46 | 934.56 (8.49) | 968.69 (12.44) | 986.12 (14.47) | 861.46 | 916.42 (6.38) | 981.91 (13.98) | 1059.58 (23.00) |
Tmax (°C) | 28.89 | 33.31 (15.32) | 31.53 (9.15) | 32.12 (11.22) | 28.89 | 36.61 (26.73) | 32.34 (11.95) | 34.16 (18.24) |
Tmin (°C) | 19.81 | 21.21 (7.08) | 22.54 (13.77) | 23.17 (16.97) | 19.81 | 21.30 (10.10) | 23.01 (19.90) | 24.80 (44.69) |
Evapotranspiration (mm) | 483.18 | 476.85 (−1.31) | 463.87 (−4.00) | 447.11 (−7.46) | 483.18 | 528.02 (2.01) | 513.71 (−0.75) | 500.58 (−3.29) |
Evaporation (mm) | 236.50 | 234.94 (−0.66) | 237.97 (0.62) | 239.99 (1.48) | 236.50 | 236.79 (0.12) | 241.73 (2.21) | 254.96 (7.81) |
Transpiration (mm) | 281.11 | 291.54 (3.71) | 285.20 (1.46) | 274.64 (−2.30) | 281.11 | 291.22 (3.60) | 271.98 (−3.25) | 245.62 (−12.62) |
Surface discharge (mm) | 275.45 | 419.1 (11.63) | 442.83 (17.95) | 460.10 (22.55) | 275.45 | 399.24 (6.34) | 463.61 (23.48) | 518.04 (37.98) |
Percolation (mm) | 208.79 | 202.70 (−2.92) | 187.93 (−9.99) | 184.12 (−1182) | 208.79 | 194.46 (−6.87) | 181.48 (−13.08) | 188.95 (−9.50) |
Deep percolation (mm) | 18.35 | 17.68 (−3.66) | 16.58 (−9.67) | 16.02 (−12.70) | 18.35 | 17.15 (−6.54) | 16.17 (−11.86) | 15.28 (−16.72) |
Irrigation (mm) | 616.36 | 618.55 (0.36) | 627.68 (1.84) | 633.57 (2.79) | 616.36 | 625.27 (1.45) | 636.16 (3.21) | 632.22 (2.57) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamruzzaman, M.; Hwang, S.; Choi, S.-K.; Cho, J.; Song, I.; Song, J.-h.; Jeong, H.; Jang, T.; Yoo, S.-H. Evaluating the Impact of Climate Change on Paddy Water Balance Using APEX-Paddy Model. Water 2020, 12, 852. https://doi.org/10.3390/w12030852
Kamruzzaman M, Hwang S, Choi S-K, Cho J, Song I, Song J-h, Jeong H, Jang T, Yoo S-H. Evaluating the Impact of Climate Change on Paddy Water Balance Using APEX-Paddy Model. Water. 2020; 12(3):852. https://doi.org/10.3390/w12030852
Chicago/Turabian StyleKamruzzaman, Mohammad, Syewoon Hwang, Soon-Kun Choi, Jaepil Cho, Inhong Song, Jung-hun Song, Hanseok Jeong, Taeil Jang, and Seung-Hwan Yoo. 2020. "Evaluating the Impact of Climate Change on Paddy Water Balance Using APEX-Paddy Model" Water 12, no. 3: 852. https://doi.org/10.3390/w12030852
APA StyleKamruzzaman, M., Hwang, S., Choi, S.-K., Cho, J., Song, I., Song, J.-h., Jeong, H., Jang, T., & Yoo, S.-H. (2020). Evaluating the Impact of Climate Change on Paddy Water Balance Using APEX-Paddy Model. Water, 12(3), 852. https://doi.org/10.3390/w12030852