Emerald Growth: A New Framework Concept for Managing Ecological Quality and Ecosystem Services of Transitional Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Case Study Area
3. Results
3.1. WFD (2000/60/EC), MSFD (2008/56/EC) and MSPD (2014/89/EU): Delimiting Regulation Spheres in Open and Transitional Waters
3.2. Ecosystem Goods and Services of Transitional Waters
- Provisioning of biological and non-biological products such as supplying of food and water. Transitional waters provide fish, shellfish, crustaceans and sea-weeds. They supply building materials such as sand and gravel, and medicinal products from marine plants, microbes and animals. The definition can also include renewable energies (wind and wave power as well as tidal power systems for estuaries).
- Regulating services are the benefits of regulating ecosystem processes such as climate and disease control. Transitional waters outperform all other ecosystems in terms of regulating services [20]. Transitional waters and their habitats like mangroves, salt marshes and intertidal flats regulate several material flows. They recycle various elements, retain excess nutrients that flow into the sea, protect the hinterland from floods caused by storms or hurricanes, and absorb and process waste materials.
- Cultural services are intangible benefits that people draw from ecosystems, for example through relaxation and aesthetic experiences [38,39]. Cultural heritage is an important trait of cultural services provided by transitional water ecosystems, that is, the development of local cultures with peculiar ethnic connotations. From an inspirational point of view, without referring to the uniqueness of Venice, the Camargue of the Impressionist painters is worth-mentioning.
- Supporting services are those that necessary for the production of all other ecosystem services, like soil formation and nutrient cycling. Primary production is another supporting service as it fuels and maintains the higher trophic levels of the ecosystem and its biodiversity in transitional waters, and in the adjacent sea. For example, coastal lagoons, estuaries and other transitional waters form the main nurseries for juveniles of many commercially harvestable fish species.
- Harvesting of fish, cray fish, mussels, clams and shrimps [40];
- Growing domestic water fowl, halophytes for fodder and ethnic medicine, spices, fruits and producing traditional local wine;
- Protecting the marine environment from physical disturbances caused by flooding and from chemical disturbances caused by pollution from the watershed [41];
- Conserving aquatic biodiversity, especially the biodiversity of migratory fish and birds [42];
- Providing amenities for water- and nature- tourism and other types of outdoor recreation [19];
- Maintaining coastal cultural and historical heritage values like traditions of combining fisheries and farming, as well as sustainable small-scale aquaculture [3];
- Providing diverse and relatively readily available data for environmental research, education and public awareness illustrating the relationships between ecological, physical and human processes that shape the environment [8].
3.3. Case Study: Comparative Analysis of the Curonian Lagoon (Baltic Sea) and Lesina Lagoon (Adriatic Sea)
3.3.1. Emerald Growth Drivers
Depletion of Living Resources
Other Specific Drivers of Emerald Growth
3.3.2. Preconditions for Sustainable Emerald Growth Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Basset, A.; Sabetta, L.; Fonnesu, A.; Mouillot, D.; Do Chi, T.; Viaroli, P.; Giordani, G.; Reizopoulou, S.; Abbiati, M.; Carrada, G.C. Typology in Mediterranean transitional waters: New challenges and perspectives. Aquat. Conserv. 2006, 16, 441–455. [Google Scholar] [CrossRef]
- Tagliapietra, D.; Volpi Ghirardini, A. Notes on coastal lagoon typology in the light of the EU Water Frame-work Directive: Italy as a case study. Aquat. Conserv. 2006, 16, 457–467. [Google Scholar] [CrossRef]
- Breber, P.; Povilanskas, R.; Armaitienė, A. Recent evolution of fishery and land reclamation in Curonian and Lesina lagoons. Hydrobiologia 2008, 611, 105–114. [Google Scholar] [CrossRef]
- Viaroli, P.; Mistri, M.; Troussellier, M.; Guerzoni, S.; Cardoso, A.C. Structure, functions and ecosystem alterations in Southern European coastal lagoons. Preface. Hydrobiologia 2005, 550, 7–9. [Google Scholar]
- McLusky, D.S.; Elliott, M. Transitional waters: A new approach, semantics or just muddying the waters? Estuar. Coast. Shelf Sci. 2007, 71, 359–363. [Google Scholar] [CrossRef]
- Tagliapietra, D.; Sigovini, M.; Ghirardini, A.V. A review of terms and definitions to categorise estuaries, lagoons and associated environments. Mar. Freshw. Res. 2009, 60, 497–509. [Google Scholar] [CrossRef]
- Razinkovas-Baziukas, A.; Povilanskas, R. Chapter 1. In troducing transitional waters. In Transboundary Management of Transitional Waters—Code of Conduct and Good Practice Examples; Nilsson, H., Povilanskas, R., Stybel, N., Eds.; EUCC Germany: Warnemünde, Germany, 2012; pp. 8–14. [Google Scholar]
- Povilanskas, R.; Razinkovas-Baziukas, A.; Jurkus, E. Integrated environmental management of trans-boundary transitional waters: Curonian Lagoon case study. Ocean Coast. Manag. 2014, 101, 14–23. [Google Scholar] [CrossRef]
- Schernewski, G.; Wielgat, M. Towards a Typology for the Baltic Sea. In Managing the Baltic Sea; Schernewski, G., Löser, N., Eds.; EUCC Germany: Warnemünde, Germany, 2004; pp. 35–52. [Google Scholar]
- Krzymiński, W.; Kruk-Dowgiałło, L.; Zawadzka-Kahlau, E.; Dubrawski, R.; Kamińska, M.; Łysiak-Pastuszak, E. Typology of Polish marine waters. In Baltic Sea Typology; Schernewski, G., Wielgat, M., Eds.; EUCC Germany: Warnemünde, Germany, 2004; pp. 39–48. [Google Scholar]
- Cardeccia, A.; Marchini, A.; Occhipinti-Ambrogi, A.; Galil, B.; Gollasch, S.; Minchin, D.; Narščius, A.; Olenin, S.; Ojaveer, H. Assessing biological invasions in European Seas: Biological traits of the most widespread non-indigenous species. Estuar. Coast. Shelf Sci. 2018, 201, 17–28. [Google Scholar] [CrossRef]
- Elliott, M.; McLusky, D.S. The need for definitions in understanding estuaries. Estuar. Coast. Shelf Sci. 2002, 55, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Aoki-Suzuki, C. Chapter 1. Green Economy and Green Growth in international trends of sustainability indicators. In The Economics of Green Growth: New indicators for Sustainable Societies; Managi, S., Ed.; Rout-ledge: London, UK; New York, NY, USA, 2015; pp. 23–46. [Google Scholar]
- Eikeset, A.M.; Mazzarella, A.B.; Davíðsdóttir, B.; Klinger, D.H.; Levin, S.A.; Rovenskaya, E.; Stenseth, N.C. What is blue growth? The semantics of ‘Sustainable Development’ of marine environments. Mar. Policy 2018, 87, 177–179. [Google Scholar] [CrossRef]
- Boonstra, W.J.; Valman, M.; Björkvik, E. A sea of many colours—How relevant is Blue Growth for capture fisheries in the Global North, and vice versa? Mar. Policy 2018, 87, 340–349. [Google Scholar] [CrossRef]
- Burgess, M.G.; Clemence, M.; McDermott, G.R.; Costello, C.; Gaines, S.D. Five rules for pragmatic blue growth. Mar. Policy 2018, 87, 331–339. [Google Scholar] [CrossRef]
- Jänicke, M. Green growth: From a growing eco-industry to economic sustainability. Energy Policy 2012, 48, 13–21. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Antikainen, R.; Hokkanen, J.; Koskela, S.; Kurppa, S.; Känkänen, R.; Seppälä, J. Developing Key Indicators of Green Growth. Sustain. Dev. 2018, 26, 51–64. [Google Scholar] [CrossRef]
- Clara, I.; Dyack, B.; Rolfe, J.; Newton, A.; Borg, D.; Povilanskas, R.; Brito, A.C. The Value of Coastal Lagoons: Case Study of Recreation at the Ria de Aveiro, Portugal in comparison to the Coorong, Australia. J. Nat. Conserv. 2018, 43, 190–200. [Google Scholar] [CrossRef]
- Newton, A.; Brito, A.C.; Icely, J.D.; Valérie, D.; Inês, C.; Stewart, A.; Gerald, S.; Miguel, I.; Ana, I.L.; Ana, I.S.; et al. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Ana, B.; Ana, C.C.; Franciscus, C.; Simona, D.R.; Flemming, G.; Jens, W.H.; Marianne, H.; et al. An overview of ecological status, vulnerability and future perspect-ives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Povilanskas, R.; Armaitienė, A.; Breber, P.; Razinkovas-Baziukas, A.; Taminskas, J. Integrity of linear littoral habitats of Lesina and Curonian Lagoons. Hydrobiologia 2012, 699, 99–110. [Google Scholar] [CrossRef]
- Razinkovas, A.; Gasiūnaitė, Z.; Viaroli, P.; Zaldívar, J.M. Preface: European lagoons—Need for further comparison across spatial and temporal scales. Hydrobiologia 2008, 611, 1–4. [Google Scholar] [CrossRef]
- Tagliapietra, D.; Magni, P.; Basset, A.; Viaroli, P. Ecosistemi costieri di transizione: Trasformazioni recenti, pressioni antropiche dirette e possibili impatti del cambiamento climatico. Biol. Ambient. 2014, 28, 101–111. [Google Scholar]
- Taminskas, J.; Pileckas, M.; Šimanauskienė, R.; Linkevičienė, R. Wetland classification and inventory in Lithuania. Baltica 2012, 25, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Zaldívar, J.M.; Cardoso, A.C.; Viaroli, P.; Newton, A.; De Wit, R.; Ibañez, C.; Reizopoulou, S.; Somma, F.; Razinkovas, A.; Basset, A.; et al. Eutrophication in transitional waters: An overview. Transit. Waters Monogr. 2008, 2, 1–78. [Google Scholar]
- Breber, P. The situation of lagoons in Italy today. J. Coast. Conserv. 1995, 1, 173–175. [Google Scholar] [CrossRef]
- Breber, P.; Cilenti, L.; Scirocco, T. The vicissitudes of a coastal lagoon from the 19th century to the present day. In The Changing Coast, Proceedings of Littoral 6th—International Multi-Disciplinary Symposium on Coastal Zone Research, Management and Planning, Porto, Portugal, 5–7 September, 2002; Veloso Gomes, F., Taveira Pinto, F., das Neves, L., Eds.; EUROCOAST—EUCC: Porto, Portugal, 2002; Volume 1, pp. 375–381. [Google Scholar]
- Roepstorff, A.; Povilanskas, R. On the concepts of nature protection and sustainable use of natural resources: A case study from the Curonian lagoon. In Coastal Conservation and Management in the Baltic Region, Proceedings of the EUCC–WWF Conference, Klaipėda, Lithuania, 2–8 May 1994; Gudelis, V., Povilanskas, R., Roepstorff, A., Eds.; University Publishers: Klaipėda, Lithuania, 1995; pp. 223–232. [Google Scholar]
- Kaplowitz, M.D.; Hoehn, J.P. Do focus groups and individual interviews reveal the same information for natural resource valuation? Ecol. Econ. 2001, 36, 237–247. [Google Scholar] [CrossRef]
- Roselli, L.; Fabbrocini, A.; Manzo, C.; D’Adamo, R. Hydrological heterogeneity, nutrient dynamics and water quality of a non-tidal lentic ecosystem (Lesina Lagoon, Italy). Estuar. Coast. Shelf Sci. 2009, 84, 539–552. [Google Scholar] [CrossRef]
- Manini, E.; Breber, P.; D’Adamo, R.; Spagnoli, F.; Danovaro, R. Lake of Lesina. In South-Eastern Italian Coastal Systems; LOICZ: Texel, The Netherlands, 2005; p. 17. [Google Scholar]
- Armaitienė, A.; Boldyrev, V.L.; Povilanskas, R.; Taminskas, J. Integrated shoreline management and tourism development on the cross-border World Heritage Site: A case study from the Curonian spit (Lithuania/Russia). J. Coast. Conserv. 2007, 11, 13–22. [Google Scholar] [CrossRef]
- Borja, Á.; Elliott, M.; Carstensen, J.; Heiskanen, A.-S.; van de Bund, W. Marine management—Towards an integrated implementation of the European Marine Strategy Framework and the Water Framework Directives. Mar. Pollut. Bull. 2010, 60, 2175–2186. [Google Scholar] [CrossRef]
- Wilson, L.; Dickinson, P.; Jeandron, J. Reconstructing Human-Landscape Interactions; Cambridge Scholars Publishing: Cambridge, UK, 2009; p. 291. [Google Scholar]
- Tilley, C. An Ethnography of the Neolithic: Early Prehistoric Societies in Southern Scandinavia; Cambridge University Press: Cambridge, UK, 2003; p. 388. [Google Scholar]
- Razinkovas–Baziukas, A.; Povilanskas, R.; Armaitienė, A. Chapter 2. Ecosystem goods and services of transitional waters. In Transboundary Management of Transitional Waters—Code of Conduct and Good Practice Examples; Nilsson, H., Povilanskas, R., Stybel, N., Eds.; EUCC Germany: Warnemünde, Germany, 2012; pp. 15–22. [Google Scholar]
- Urbis, A.; Povilanskas, R.; Newton, A. Valuation of aesthetic ecosystem services of protected coastal dunes and forests. Ocean Coast. Manag. 2019, 179, 104832. [Google Scholar] [CrossRef]
- Urbis, A.; Povilanskas, R.; Šimanauskienė, R.; Taminskas, J. Key aesthetic appeal concepts of coastal dunes and forests on the example of the Curonian Spit (Lithuania). Water 2019, 11, 1193. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, N.J.; Austen, M.C.; Atkins, J.P.; Burdon, D.; Degraer, S.; Dentinho, T.P.; Derous, S.; Holm, P.; Horton, T.; van Ierland, E. Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Mar. Pollut. Bull. 2007, 54, 253–265. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Nobre, A.M. An ecological and economic assessment methodology for coastal ecosystem management. Environ. Manag. 2009, 44, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Aubry, A.; Elliott, M. The use of environmental integrative indicators to assess seabed disturbance in estuaries and coasts: Application to the Humber Estuary, UK. Mar. Pollut. Bull. 2006, 53, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.; Conley, D.J.; Carstensen, J.; Sánchez-Camacho, M. Return to Neverland: Shifting baselines affect eutrophication restoration targets. Estuar. Coasts 2009, 32, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Solidoro, C.; Bandelj, V.; Bernardi Aubry, F.; Camatti, E.; Ciavatta, S.; Cossarini, G.; Facca, C.; Franzoi, P.; Libralato, S.; Canu, D.; et al. Response of the Venice Lagoon Ecosystem to Natural and Anthropogenic Pressures over the Last 50 Years. In Coastal Lagoons: Critical Habitats of Environmental Change; Kennish, M.J., Pearl, H.W., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 483–511. [Google Scholar]
- Hassan, R.M.; Scholes, R.; Ash, N. (Eds.) Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment; Island Press: Washington DC, USA, 2005; p. 917. [Google Scholar]
- Troy, A.; Wilson, M.A. Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecol. Econ. 2006, 60, 435–449. [Google Scholar] [CrossRef]
- Pöntynen, R.; Erkkilä-Välimäki, A. Blue Growth—Drivers and Alternative Scenarios for the Gulf of Finland and the Archipelago Sea: Qualitative Analysis Based on Expert Opinions; Publications of the Centre for Maritime Studies—Series A75; Turun yliopiston Brahea-keskus: Turku, Finland, 2018; p. 134. [Google Scholar]
- Dekker, W. On the distribution of the European eel (Anguilla anguilla) and its fisheries. Can. J. Fish. Aquat. Sci. 2003, 60, 787–799. [Google Scholar] [CrossRef]
- Li Veli, D.; Lillo, A.O.; Lucchetti, A.; Mancinelli, G.; Scirocco, T.; Specchiulli, A.; Cilenti, L. Artisanal fishing in Lesina Lagoon: Critical points and innovative fishing techniques. In Proceedings of the 9th International Conference on Coastal Transitional Environments, Venice, Italy, 21–24 January 2020; Umgiesser, G., Ed.; CNR–ISMAR: Venice, Italy, 2020; p. 107. [Google Scholar]
- Ibanez, C.; Peñuelas, J. Changing nutrients, changing rivers. Science 2019, 365, 637–638. [Google Scholar] [CrossRef]
- Deegan, L.A.; Johnson, D.S.; Warren, R.S.; Peterson, B.J.; Fleeger, J.W.; Fagherazzi, S.; Wollheim, W.M. Coastal eutrophication as a driver of salt marsh loss. Nature 2012, 490, 388–392. [Google Scholar] [CrossRef]
- Weller, M.W. Wetland Birds: Habitat Resources and Conservation Implications; Cambridge University Press: Cambridge, UK, 1999; p. 271. [Google Scholar]
- Pauli, G. The Blue Economy: 10 Years, 100 Innovations, 100 Million Jobs; Paradigm Publications: Taos, NM, USA, 2010; p. 308. [Google Scholar]
- Boyes, S.J.; Elliott, M. Marine legislation—The ultimate ‘horrendogram’: International law, European directives & national implementation. Mar. Pollut. Bull. 2014, 86, 39–47. [Google Scholar]
- Da Luz Fernandes, M.; Esteves, T.C.; Oliveira, E.R.; Alves, F.L. How does the cumulative impacts approach support Maritime Spatial Planning? Ecol. Indic. 2017, 73, 189–202. [Google Scholar] [CrossRef]
- Ferranti, F.; Turnhout, E.; Beunen, R.; Behagel, J.H. Shifting nature conservation approaches in Natura 2000 and the implications for the roles of stakeholders. J. Environ. Plan. Manag. 2014, 57, 1642–1657. [Google Scholar] [CrossRef]
- Kati, V.; Hovardas, T.; Dieterich, M.; Ibisch, P.L.; Mihok, B.; Selva, N. The challenge of implementing the European network of protected areas Natura 2000. Conserv. Biol. 2015, 29, 260–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlami, V.; Kokkoris, I.P.; Zogaris, S.; Cartalis, C.; Kehayias, G.; Dimopoulos, P. Cultural landscapes and attributes of “culturalness” in protected areas: An exploratory assessment in Greece. Sci. Total Environ. 2017, 595, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, S.; Ibáñez, C.; Lazar, L.; Raimbault, P.; Giani, M. Flow regime and nutrient-loading trends from the Largest South European watersheds: Implications for the productivity of Mediterranean and Black Sea’s Coastal Areas. Water 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Day, J.W.; Ibáñez, C.; Pont, D.; Scarton, F. Status and Sustainability of Mediterranean Deltas: The Case of the Ebro, Rhône, and Po Deltas and Venice Lagoon. In Coasts and Estuaries: The Future; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2019; pp. 237–249. [Google Scholar]
Type | Characteristics |
---|---|
Classical estuary | Tidally dominated at the seaward part; salinity reduced by freshwater river inputs; riverine dominance inward |
River mouth * | River outlet as a well-defined physiographic coastal feature |
Delta * | Low energy, typically shaped, sediment dominated, river mouth area; estuary outflow |
Fjord | Land freshwater seepage or seasonal riverine inputs; limited tidal influence; stratified; long narrow, glacially eroded sea inlet, step sided, sill at the mouth |
Ria | Drowned river valley, some freshwater inputs; limited exchange |
Non-tidal/microtidal lagoon * | Limited exchange with the marine area through a restricted mouth; separated from the sea by sand or shingle banks, bars, etc., shallow area, tidal range < 50 cm |
Tidal lagoon | As above but with tidal range > 50 cm |
Coastal plume * | Outflow of estuary, or lagoon, notably diluted salinity and hence different biota than in surrounding marine areas |
Notions | Green Growth | Emerald Growth | Blue Growth |
---|---|---|---|
Key drivers | (1) Environmental and climate change and resulting economic policy changes; (2) Circular economy advancement | (1) Depletion of living resources; (2) Eutrophication; and water and sediment pollution; (3) Land reclamation; 4) Growing industrial and recreational use; (5) Sea level rise | (1) Growth of shipping; (2) Marine pollution; (3) Depletion of living resources; (4) Demand for energy and mineral resources; (5) Expanding networks of pipelines and cables |
Main indicator groups [13] | (1) Economic growth, productivity and competitiveness; (2) Labor markets, education and income; (3) Carbon and energy productivity; (4) Resource productivity; (5) Multi-factor productivity; (6) Natural asset base; (7) Renewable stocks; (8) Non-renewable stocks | ||
Main planning approaches | (1) Hierarchy (2) Master-planning (3) Sectorial planning (4) Functional zoning (5) Detailed planning | (1) Hierarchy (2) Master-planning (3) Sectorial planning (4) Functional zoning (5) Trade-offs (6) Ecosystem approach (7) Cross-border links | (1) Master-planning (2) Sectorial planning (3) Functional zoning (4) Trade-offs (5) Ecosystem approach (6) Cross-border links |
Period | Feudal Tenure | Privatisation | Cooperation | Current Stage |
---|---|---|---|---|
Main yield | Fish, cattle forage | Dairy products, vegetables, fish | Dairy products, vegetables, fish | Dairy products, vegetables |
Fish stock use | Sustainable | Unsustainable | Quasi-sustainable | Quasi-sustainable |
Causes of precarity | Diseases (plague, malaria), wars | Fish stock depletion, wars | Diking, land reclamation | Eutrophication, over-reliance on subsidies |
Environmental concerns | Low | Increasing (eutrophication, persistent pollution) | Increasing (eutrophication, persistent pollution) | Stable |
Provisional ecosystem services | High | Intermediate | High | Decreasing * |
Cultural ecosystem services | Low | Increasing | Increasing | High |
Economic role | High | Low | High | Low |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliapietra, D.; Povilanskas, R.; Razinkovas-Baziukas, A.; Taminskas, J. Emerald Growth: A New Framework Concept for Managing Ecological Quality and Ecosystem Services of Transitional Waters. Water 2020, 12, 894. https://doi.org/10.3390/w12030894
Tagliapietra D, Povilanskas R, Razinkovas-Baziukas A, Taminskas J. Emerald Growth: A New Framework Concept for Managing Ecological Quality and Ecosystem Services of Transitional Waters. Water. 2020; 12(3):894. https://doi.org/10.3390/w12030894
Chicago/Turabian StyleTagliapietra, Davide, Ramūnas Povilanskas, Artūras Razinkovas-Baziukas, and Julius Taminskas. 2020. "Emerald Growth: A New Framework Concept for Managing Ecological Quality and Ecosystem Services of Transitional Waters" Water 12, no. 3: 894. https://doi.org/10.3390/w12030894
APA StyleTagliapietra, D., Povilanskas, R., Razinkovas-Baziukas, A., & Taminskas, J. (2020). Emerald Growth: A New Framework Concept for Managing Ecological Quality and Ecosystem Services of Transitional Waters. Water, 12(3), 894. https://doi.org/10.3390/w12030894