Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. UHPLC-MS/MS Analysis
2.3. Experimental Design
2.4. Artemia Growth Conditions
2.5. Toxicological Tests
2.6. Enzymatic Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effluent Chemical Characterization
3.2. Acute Toxicity Tests on Artemia Salina
3.3. Changes on Enzymatic Activity
3.3.1. Glutathione S-Transferase
3.3.2. Glutathione Peroxidase
3.3.3. Lactate Dehydrogenase
3.3.4. Acetylcholinesterase
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Acronyms
EC | Emerging contaminant |
PPCPs | Pharmaceuticals and personal care products |
GST | Glutathione-S-transferase |
GPx | Glutathione peroxidase |
LDH | Lactate dehydrogenase |
AChE | Acetylcholinesterase |
WWTP | Wastewater treatment plant |
LC50 | Lethal concentration for 50% of the population |
LC25 | Lethal concentration for 25% of the population |
ET | Exposure time |
T | Temperature |
FUR | Furosemide |
HCT | Hydrochlorothiazide |
TRAM | Tramadol |
LOD | Limit of detection |
References
- IWA Resource Recovery Cluster. State of the Art Compendium Report on Resource Recovery from Water; IWA International Water Association: London, UK, 2015. [Google Scholar]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, M.; Hadfield, J.; Hughey, J.; Sanders, F.; Lapworth, D.J.; White, D.; Civil, W. A baseline assessment of emerging organic contaminants in New Zealand groundwater. Sci. Total Environ. 2019, 686, 425–439. [Google Scholar] [CrossRef]
- Jurado, A.; Vázquez-Suñé, E.; Carrera, J.M.; López de Alda, M.; Pujades, E.; Barceló, D. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context. Sci. Total Environ. 2012, 440, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Tong, A.Y.C.; Peake, B.M.; Braund, R. Disposal Practices for Unused Medications around the World. Environ. Int. 2011, 37, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Zwart, N.; Jonker, W.; ten Broek, R.; de Boer, J.; Somsen, G.; Kool, J.; Hamers, T.; Houtman, C.J.; Lamoree, M.H. Identification of mutagenic and endocrine disrupting compounds in surface water and wastewater treatment plant effluents using high-resolution effect-directed analysis. Water Res. 2020, 168, 115204. [Google Scholar] [CrossRef] [PubMed]
- Persoone, G.; Wells, P.G. Artemia in aquatic toxicology: A review. In Artemia Research and Its Applications. Morphology, Genetics, Strain Characterization Toxicology; Sorgeloos, P., Ed.; Universita Press: Wetteren, Belgium, 1987; pp. 259–275. [Google Scholar]
- Rajabi, S.; Ramazani, A.; Hamidi, M.; Naji, T. Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU 2015, 23, 20. [Google Scholar] [CrossRef] [Green Version]
- Vosylienė, M.Z. Review of the methods for acute and chronic toxicity assessment of single substances, effluents and industrial waters. Acta Zool. Lit. 2007, 17, 3–15. [Google Scholar] [CrossRef]
- US EPA. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms; EPA-821-R-02-012; US Environmental Protection Agency: Washington, DC, USA, 2002.
- Bustos-Obregon, E.; Vargas, Á. Chronic toxicity bioassay with populations of the crustacean Artemia salina exposed to the organophosphate diazinon. Biol. Res. 2010, 43, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Krishnan, S.P.; Chandrasekaran, N.; Mukherjee, A. Toxic effects of engineered nanoparticles (metal/metal oxides) on plants using Allium cepa as a model system. In Comprehensive Analytical Chemistry; Elsevier: Vellore, India, 2019; Volume 84, pp. 313–359. [Google Scholar]
- Eurostat. Population on 1 January by Five-Year Age Group, Sex and Metropolitan Regions. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=met_pjangrp3&lang=en (accessed on 24 January 2020).
- Kozisek, F.; Pomykacova, I.; Jeligova, H.; Cadek, V.; Svobodova, V. Survey of human pharmaceuticals in drinking water in the Czech Republic. J. Water Health 2013, 11, 84–97. [Google Scholar] [CrossRef]
- Rozman, D.; Hrkal, Z.; Váňa, M.; Vymazal, J.; Boukalová, Z. Occurrence of pharmaceuticals in wastewater and their interaction with shallow aquifers: A case study of Horní Beřkovice, Czech Republic. Water 2017, 9, 218. [Google Scholar] [CrossRef]
- Ponto, L.L.B.; Schoenwald, R.D. Furosemide (frusemide) a pharmacokinetic/pharmacodynamic review (part I). Clin. Pharmacokinet. 1990, 18, 381–408. [Google Scholar] [PubMed]
- Carter, B.L.; Ernst, M.E.; Cohen, J.D. Hydrochlorothiazide versus chlorthalidone: Evidence supporting their interchangeability. Hypertension 2004, 43, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, K.A. Tramadol for the management of acute pain. Drugs 1994, 47, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Varó, I.; Amat, F.; Navarro, J.C.; Barreda, M.; Pitarch, E.; Serrano, R. Assessment of the efficacy of Artemia sp (Crustacea) cysts chorion as barrier to chlorpyrifos (organophosphorus pesticide) exposure. Effect on hatching and survival. Sci. Total Environ. 2006, 366, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Horáková, M.; Kollerová, L.; Ptáková, H. Analytika Vody, 2nd ed.; Sykora, V., Ed.; Vydavatelství VŠCHT Praha: Praha, Czechia, 2007. (In Czech) [Google Scholar]
- US EPA. Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS; US Environmental Protection Agency: Washington, DC, USA, 2007.
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [PubMed]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef]
- Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.P. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Pollut. Res. 2016, 23, 4992–5001. [Google Scholar] [CrossRef]
- Brausch, J.M.; Connors, K.A.; Brooks, B.W.; Rand, G.M. Human Pharmaceuticals in the Aquatic Environment: A Review of Recent Toxicological Studies and Considerations for Toxicity Testing. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Springer: Boston, MA, USA, 2012; Volume 218, pp. 1–100. [Google Scholar]
- Vymazal, J.; Březinová, T.D.; Koželuh, M.; Kule, L. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic—The first year of monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
- Anumol, T.; Wu, S.; Marques dos Santos, M.; Daniels, K.D.; Snyder, S.A. Rapid direct injection LC-MS/MS method for analysis of prioritized indicator compounds in wastewater effluent. Environ. Sci. Water Res. Technol. 2015, 1, 632–643. [Google Scholar] [CrossRef] [Green Version]
- Rogowska, J.; Cieszynska-Semenowicz, M.; Ratajczyk, W.; Wolska, L. Micropollutants in treated wastewater. Ambio 2020, 49, 487–503. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, M.; Mathieu, O.; Gomez, E.; Casellas, C.; Fenet, H.; Hillaire-Buys, D. Presence and fate of carbamazepine, oxcarbazepine, and seven of their metabolites at wastewater treatment plants. Arch. Environ. Contam. Toxicol. 2009, 56, 408–415. [Google Scholar] [CrossRef] [PubMed]
- EU Environmental Implementation Review 2019. Country Report—CZECH REPUBLIC. Brussels, Belgium. 2019. Available online: https://ec.europa.eu/environment/eir/pdf/report_cz_en.pdf (accessed on 23 March 2020).
- Golovko, O.; Kumar, V.; Fedorova, G.; Randak, T.; Grabic, R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere 2014, 111, 418–426. [Google Scholar] [CrossRef] [PubMed]
- NORMAN. Contaminants of Emerging Concern in Urban Wastewater Joint NORMAN and Water Europe Position Paper 2019. Available online: https://www.normandata.eu/sites/default/files/files/Publications/Position%20paper_CECs%20UWW_NORMAN_WE_2019_Final_20190910_public.pdf (accessed on 20 March 2020).
- Directive, E.U.W. Council Directive of 21. May 1991 concerning urban waste water treatment (91/271/EEC). J. Eur. Commun. 1991, 34, 40. [Google Scholar]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Beretta, M.; Perelo, L.W.; de Oliveira, I.B. Quantification and toxicity testing of pharmaceuticals in tropical marine sediments. In Microorganisms in Industry and Environment: From Scientific and Industrial Research to Consumer Products; Antonio, M.V., Ed.; All Saints Bay: Bahia, Brazil, 2011; pp. 187–191. [Google Scholar]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.J.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Meric, S.; Kassinos, D.; Guida, M.; Russo, F.; Belgiorno, V. Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 2009, 43, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Migliore, L.; Civitareale, C.; Brambilla, G.; Di Delupis, G.D. Toxicity of several important agricultural antibiotics to Artemia. Water Res. 1997, 31, 1801–1806. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Zhang, D.; Wang, Y.; Zhou, X.; Xu, H.; Mei, Y. Toxic assessment of triclosan and triclocarban on Artemia salina. Bull. Environ. Contam. Toxicol. 2015, 95, 728–733. [Google Scholar] [CrossRef]
- García, J.L.; Santacruz-Vázquez, V.; Valera, M.; Moreira, M.; Cardenas-Chavez, D.; Tapia-Salazar, M.; Torres, E. Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase. Int. J. Environ. Res. Public Health 2019, 16, 4917. [Google Scholar] [CrossRef] [Green Version]
- Vanhaecke, P.; Siddall, S.E.; Sorgeloos, P. International study on Artemia. XXXII. Combined effects of temperature and salinity on the survival of Artemia of various geographical origin. J. Exp. Mar. Biol. Ecol. 1984, 80, 259–275. [Google Scholar] [CrossRef]
- Gajardo, G.M.; Beardmore, J.A. The Brine Shrimp Artemia: Adapted to Critical Life Conditions. Front. Physiol. 2012, 3, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wear, R.G.; Haslett, S.J. Effects of temperature and salinity on the biology of Artemia franciscana Kellogg from lake Grassmere, New Zealand. 1. Growth and mortality. J. Exp. Mar. Biol. Ecol. 1986, 98, 153–166. [Google Scholar] [CrossRef]
- Persoone, G.; Van de Vel, A.; Van Steertegem, M.; De Nayer, B. Predictive value of laboratory tests with aquatic invertebrates: Influence of experimental conditions. Aquat. Toxicol. 1989, 14, 149–167. [Google Scholar] [CrossRef]
- Isidori, M.; Nardelli, A.; Parrella, A.; Pascarella, L.; Previtera, L. A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: Furosemide and its photoproduct. Chemosphere 2006, 63, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Senn, D.B.; Moran, R.E.; Shine, J.P. Prioritizing environmental risk of prescription pharmaceuticals. Regul. Toxicol. Pharm. 2013, 65, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascoe, D.; Karntanut, W.; Muller, C.T. Do pharmaceuticals affect freshwater invertebrates? A study with the cnidarians Hydra vulgaris. Chemosphere 2003, 51, 521–528. [Google Scholar] [CrossRef]
- Martins, A.; Guimarães, L.; Guilhermino, L. Chronic toxicity of the veterinary antibiotic florfenicol to Daphnia magna assessed at two temperatures. Environ. Toxicol. Pharmacol. 2013, 36, 1022–1032. [Google Scholar] [CrossRef]
- Li, A.J.; Leung, P.T.Y.; Bao, V.W.W.; Yi, A.X.L.; Leung, K.M.Y. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer. Ecotoxicology 2014, 23, 1564–1573. [Google Scholar] [CrossRef]
- Patra, R.W.; Chapman, J.C.; Lim, R.P.; Gehrke, P.C.; Sunderam, R.M. Interactions between water temperature and contaminant toxicity to freshwater fish. Environ. Toxicol. Chem. 2015, 34, 1809–1817. [Google Scholar] [CrossRef]
- Maulvault, A.L.; Camacho, C.; Barbosa, V.; Alves, R.; Anacleto, P.; Fogaça, F.; Kwadijk, C.; Kotterman, M.; Cunha, S.C.; Fernandes, J.O.; et al. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves. Environ. Res. 2018, 161, 236–247. [Google Scholar] [CrossRef]
- Lannig, G.; Cherkasova, A.S.; Sokolova, I.M. Temperature-dependent effects of cadmium on mitochondrial and whole-organism bioenergetics of oysters (Crassostrea virginica). Mar. Environ. Res. 2006, 62, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Slotsbo, S.; Heckmann, L.H.; Damgaard, C.; Roelofs, D.; de Boer, T.; Holmstrup, M. Exposure to mercury reduces heat tolerance and heat hardening ability of the springtail Folsomia candida. Comp. Biochem. Physiol. C 2009, 150, 118–123. [Google Scholar] [CrossRef]
- Alcock, R.E.; Sweetman, A.; Jones, K.C. Assessment of organic contaminant fate in wastewater treatment plants I: Selected compounds and physicochemical properties. Chemosphere 1999, 38, 2247–2262. [Google Scholar] [CrossRef]
- US EPA; Estimation Program Interface (EPI). Retrieved from PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/7047 (accessed on 4 February 2020).
- Yalkowsky, S.H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 866. [Google Scholar]
- Jakimska, A.; Śliwka-Kaszyńska, M.; Reszczyńska, J.; Namieśnik, J.; Kot-Wasik, A. Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS. Anal. Bioanal. Chem. 2014, 406, 3667–3680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigante, M.; DellaGreca, M.; Previtera, L.; Rubino, M.; Temussi, F. Degradation of hydrochlorothiazide in water. Environ. Chem. Lett. 2005, 2, 195–198. [Google Scholar] [CrossRef]
- Rúa-Gomez, P.C.; Puettmann, W. Degradation of lidocaine, tramadol, venlafaxine and the metabolites O-desmethyltramadol and O-desmethylvenlafaxine in surface waters. Chemosphere 2013, 90, 1952–1959. [Google Scholar] [CrossRef]
- DellaGreca, M.; Fiorentino, A.; Iesce, M.R.; Isidori, M.; Nardelli, A.; Previtera, L.; Temussi, F. Identification of phototransformation products of prednisone by sunlight: Toxicity of the drug and its derivatives on aquatic organisms. Environ. Toxicol. Chem. 2003, 22, 534–539. [Google Scholar] [CrossRef]
- Prasath, A.; Panneerselvan, L.; Provatas, A.; Naidu, R.; Megharaj, M. Genotoxicity assessment of acute exposure of 2,4-dinitroanisole, its metabolites and 2,4,6-trinitrotoluene to Daphnia carinata. Ecotoxicology 2016, 25, 1873–1879. [Google Scholar] [CrossRef]
- Papadopoulos, A.I.; Lazaridou, E.; Mauridou, G.; Touraki, M. Glutathione S-transferase in the branchiopod Artemia salina. Mar. Biol. 2004, 144, 295–301. [Google Scholar] [CrossRef]
- Grammou, A.; Papadimitriou, C.; Samaras, P.; Vasara, E.; Papadopoulos, A.I. Effect of municipal wastewater effluent upon the expression of Glutathione S-transferase isoenzymes of brine shrimp Artemia. Chemosphere 2011, 84, 105–109. [Google Scholar] [CrossRef]
- Oliveira, L.L.D.; Antunes, S.C.; Gonçalves, F.; Rocha, O.; Nunes, B. Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol. Environ. Saf. 2015, 119, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, K.; Nachiappan, V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae. Indian J. Biochem. Biophys. 2010, 47, 383–387. [Google Scholar] [PubMed]
- Nunes, B.; Carvalho, F.; Guilhermino, L. Effects of widely used pharmaceuticals and a detergent on oxidative stress biomarkers of the crustacean Artemia parthenogenetica. Chemosphere 2006, 62, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I.; Bagnyukova, T.V. Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp. Biochem. Phys. C 2006, 143, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Parolini, M.; De Felice, B.; Ferrario, C.; Salgueiro-González, N.; Castiglioni, S.; Finizio, A.; Tremolada, P. Benzoylecgonine exposure induced oxidative stress and altered swimming behavior and reproduction in Daphnia magna. Environ. Pollut. 2018, 232, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Bharose, R.; ve Singh, D. Effect of tannery waste water on lactate dehydrogenase (LDH) enzyme activity of fresh water fish, Channa punctatus. J. Entomol. Zool. Stud. 2017, 5, 643–647. [Google Scholar]
- Rema, L.P.; Babu, P. Effect of mercury and zinc on some metabolically important enzymes of Oreochromis mossambicus. Indian J. Mar. Sci. 2012, 41, 317–380. [Google Scholar]
- Criel, G.R.; Macrae, T.H. Artemia morphology and structure. In Artemia: Basic and Applied Biology, 1st ed.; Abatzopoulos, T.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–37. [Google Scholar]
- Kobayashi, N.; Taniguchi, N.; Sako, F.; Takakuwa, E. A screening method for the toxicity of food dyes using Artemia salina larvae. J. Toxicol. Sci. 1977, 2, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Xia, Y.; Chen, Y.; Xu, T.; Xu, L.; Guo, Z.; Xu, H.; Xie, H.Q.; Zhao, B. Acetylcholinesterase Is a Potential Biomarker for a Broad Spectrum of Organic Environmental Pollutants. Environ. Sci. Technol. 2018, 52, 8065–8074. [Google Scholar] [CrossRef]
- De Lange, H.J.; Peeters, E.; Lurling, M. Changes in Ventilation and Locomotion of Gammarus pulex (Crustacea, Amphipoda) in Response to Low Concentrations of Pharmaceuticals. Hum. Ecol. Risk Assess. 2009, 15, 111–120. [Google Scholar] [CrossRef]
- Solé, M.; Shaw, J.P.; Frickers, P.E.; Readman, J.W.; Hutchinson, T.H. Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal. Bioanal. Chem. 2009, 396, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zou, H.; Liu, Q.; Zhang, S.; Razanajatovo, R.M. Bioconcentration of the antidepressant fluoxetine and its effects on the physiological and biochemical status in Daphnia magna. Ecotoxicol. Environ. Saf. 2017, 142, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, S.; Schiedek, D.; Dippner, J.W. Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp. from the south-western Baltic Sea. J. Exp. Mar. Biol. Ecol. 2005, 320, 93–103. [Google Scholar] [CrossRef]
- Hook, S.E.; Gallagher, E.P.; Batley, G.E. The role of biomarkers in the assessment of aquatic ecosystem health. Integr. Environ. Assess. 2014, 10, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Jemec, A.; Drobne, D.; Tišler, T.; Sepčić, K. Biochemical biomarkers in environmental studies—Lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ. Sci. Pollut. Res. 2009, 17, 571–581. [Google Scholar] [CrossRef]
Emerging Contaminant | Concentration Sampling April 2016 (ng/L) | Concentration Sampling August 2016 (ng/L) | A. salina Ecotoxicity | Dose |
---|---|---|---|---|
Atenolol | 290 | 190 | yes | >100 mg/L (LC50 48 h) [24] |
<0.125 mg/mL (LC50 48 h) [35] | ||||
Azithromycin | 1300 | 1200 | yes | >100 mg/L (LC50 48 h) [24] |
110.316 μg/mL (LC50 24 h) [8] | ||||
Bezafibrate | 11 | <10 | no | |
Caffeine | 220 | 270 | yes | 0.5 mg/mL (LC90 48 h) [35] |
306 μg/mL (LC50 24 h) [36] | ||||
Carbamazepine | 460 | 500 | yes | >100 mg/L (LC50 48 h) [24] |
Carbamazepine 10,11-dihydro-10-hydroxy | 120 | 67 | no | |
Carbamazepine 10,11-epoxide | 39 | 42 | no | |
Carbamazepine-2-hydroxy | 77 | <10 | no | |
Chloramphenicol | <20 | 21 | yes | >100 mg/L (LC50 48 h) [24] |
Clarithromycin | 1300 | 430 | yes | >100 mg/L (LC50 48 h) [24] |
Diclofenac | 1900 | 1800 | yes | >100 mg/L (LC50 48 h) [24] |
>20 mg/L (LC10 24 h, 48 h) [37] | ||||
Diclofenac-4’-hydroxy | 720 | 600 | no | |
Erythromycin | 78 | 16 | yes | >100 mg/L (LC10 120 h) [38] |
0.5 mg/mL (LC90 48 h) [35] | ||||
Furosemide | 1300 | 1200 | no | |
Gabapentin | 7200 | 2200 | yes | >100 mg/L (LC50 48 h) [24] |
Hydrochlorothiazide | 2700 | 1900 | no | |
Ibuprofen | 170 | 450 | yes | 373.526 μg/mL (LC50 24 h) [8] |
Ibuprofen-2-hydroxy | 1800 | 530 | no | |
Iohexol | 5700 | 150 | no | |
Iopamidol | 470 | 190 | no | |
Iopromide | 4800 | 63 | no | |
Ketoprofen | 260 | 180 | yes | 13.24 mg/L (LC50 48 h) [24] |
Metoprolol | 1520 | 1530 | yes | >100 mg/L (LC50 48 h) [24] |
Naproxene | 560 | 530 | yes | >100 mg/L (LC50 48 h) [24] |
Naproxene-O-desmethyl | 170 | 240 | no | |
Oxcarbazepine | 15 | 18 | no | |
Ranitidine | 160 | 190 | no | |
Saccharine | 2000 | 1800 | no | |
Sertraline | 35 | 25 | yes | 4.08 mg/L (LC50 48 h) [24] |
Sulfamethoxazole | 360 | 530 | yes | >100 mg/L (LC50 48 h) [24] |
Sulfanilamide | 75 | <50 | no | |
Sulfapyridine | 270 | 240 | no | |
Tramadol | 810 | 870 | no | |
Triclocarban | 17 | <10 | yes | 17.8 μg/L (LC50 24 h) [39] |
Triclosan | 49 | <20 | yes | 171.1 μg/L (LC50 24 h) [39] |
Trimetoprim | 500 | 370 | yes | >100 mg/L (LC50 48 h) [24] |
Venlafaxine | 340 | 320 | yes | >100 mg/L (LC50 48 h) [24] |
Parameter | LC50 | GST | GPx | LDH | AChE |
---|---|---|---|---|---|
EC | p < 0.001 | p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 |
T | p < 0.001 | p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 |
ET | p < 0.001 | p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 |
EC × T | p < 0.001 | p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 |
EC × ET | p < 0.001 | p < 0.01 | p > 0.05 * | p < 0.01 | p < 0.01 |
T × ET | p < 0.001 | p > 0.05* | p < 0.01 | p < 0.01 | p < 0.01 |
EC × T × ET | p < 0.001 | p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Sosa, V.R.; Tapia-Salazar, M.; Wanner, J.; Cardenas-Chavez, D.L. Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic). Water 2020, 12, 1079. https://doi.org/10.3390/w12041079
Diaz-Sosa VR, Tapia-Salazar M, Wanner J, Cardenas-Chavez DL. Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic). Water. 2020; 12(4):1079. https://doi.org/10.3390/w12041079
Chicago/Turabian StyleDiaz-Sosa, Veronica R., Mireya Tapia-Salazar, Jiri Wanner, and Diana L. Cardenas-Chavez. 2020. "Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic)" Water 12, no. 4: 1079. https://doi.org/10.3390/w12041079
APA StyleDiaz-Sosa, V. R., Tapia-Salazar, M., Wanner, J., & Cardenas-Chavez, D. L. (2020). Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic). Water, 12(4), 1079. https://doi.org/10.3390/w12041079