Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study
Abstract
:1. Introduction
2. Issues of Sustainable Desalination Technologies in Saudi Arabia
3. Seawater Desalination Technologies
4. Adsorption Desorption Desalination
4.1. Adsorption Heat Pump with Single and Multi-Stage Evaporator
4.2. ADD Configuration with Multiple Beds
4.3. Advanced ADD Cycle with Different Mass and Heat Recovery Configurations
4.4. Hybridization of ADD with MED and SWRO
4.5. Multi-Stage ADD Configurations
5. Potential of Implementing ADD in Saudi
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Zarzo, D.; Prats, D. Desalination and energy consumption. What can we expect in the near future? Desalination 2018, 427, 1–9. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy use for membrane seawater desalination—Current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Kajenthira, A.; Siddiqi, A.; Anadon, L.D. A new case for promoting wastewater reuse in Saudi Arabia: Bringing energy into the water equation. J. Environ. Manag. 2012, 102, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.C.; Thu, K.; Kim, Y.; Chakraborty, A.; Amy, G. Adsorption desalination: An emerging low-cost thermal desalination method. Desalination 2013, 308, 161–179. [Google Scholar] [CrossRef]
- Alsaman, A.S.; Askalany, A.A.; Harby, K.; Ahmed, M.S. A state of the art of hybrid adsorption desalination–cooling systems. Renew. Sustain. Energy Rev. 2016, 58, 692–703. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Bataineh, K.; Taamneh, Y. Review and recent improvements of solar sorption cooling systems. Energy Build. 2016, 128, 22–37. [Google Scholar] [CrossRef]
- Pouyfaucon, A.B.; García-Rodríguez, L. Solar thermal-powered desalination: A viable solution for a potential market. Desalination 2018, 435, 60–69. [Google Scholar] [CrossRef]
- Wakil Shahzad, M.; Burhan, M.; Soo Son, H.; Jin Oh, S.; Choon Ng, K. Desalination processes evaluation at common platform: A universal performance ratio (UPR) method. Appl. Therm. Eng. 2018, 134, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ihm, S.; Al-Najdi, O.Y.; Hamed, O.A.; Jun, G.; Chung, H. Energy cost comparison between MSF, MED and SWRO: Case studies for dual purpose plants. Desalination 2016, 397, 116–125. [Google Scholar] [CrossRef]
- Gikas, P.; Tchobanoglous, G. The role of satellite and decentralized strategies in water resources management. J. Environ. Manag. 2009, 90, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, M.P.; McHugh, A.; Anda, M.; Ho, G. A framework for planning sustainable seawater desalination water supply. Sci. Total Environ. 2017, 575, 826–835. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhengming, Z.; Yuan, L. A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 2009, 13, 2245–2262. [Google Scholar] [CrossRef]
- Alkaisi, A.; Mossad, R.; Sharifian-Barforoush, A. A Review of the Water Desalination Systems Integrated with Renewable Energy. Energy Procedia 2017, 110, 268–274. [Google Scholar] [CrossRef]
- Darre, N.C.; Toor, G.S. Desalination of water: A review. Curr. Pollut. Rep. 2018, 4, 104–111. [Google Scholar] [CrossRef]
- Dawoud, M.A. Environmental impacts of seawater desalination: Arabian Gulf case study. Int. J. Environ. Sustain. 2012, 1, 22–37. [Google Scholar] [CrossRef]
- Ramli, M.A.M.; Hiendro, A.; Al-Turki, Y.A. Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia. Renew. Energy 2016, 91, 374–385. [Google Scholar] [CrossRef]
- Zhang, Y.; Sivakumar, M.; Yang, S.; Enever, K.; Ramezanianpour, M. Application of solar energy in water treatment processes: A review. Desalination 2018, 428, 116–145. [Google Scholar] [CrossRef] [Green Version]
- Tzen, E.; Morris, R. Renewable energy sources for desalination. Sol. Energy 2003, 75, 375–379. [Google Scholar] [CrossRef]
- Mohamed, A.M.I.; El-Minshawy, N.A. Theoretical investigation of solar humidification–dehumidification desalination system using parabolic trough concentrators. Energy Convers. Manag. 2011, 52, 3112–3119. [Google Scholar] [CrossRef]
- Chen, Q.; Kum Ja, M.; Li, Y.; Chua, K.J. Evaluation of a solar-powered spray-assisted low-temperature desalination technology. Appl. Energy 2018, 211, 997–1008. [Google Scholar] [CrossRef]
- Brogioli, D.; La Mantia, F.; Yip, N.Y. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination 2018, 428, 29–39. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Chakraborty, A.; Saha, B.B.; Chun, W.G. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water. Int. J. Low-Carbon Technol. 2009, 4, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Subramani, A.; Badruzzaman, M.; Oppenheimer, J.; Jacangelo, J.G. Energy minimization strategies and renewable energy utilization for desalination: A review. Water Res. 2011, 45, 1907–1920. [Google Scholar] [CrossRef]
- Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Mabrouk, A.N.; Fath, H.E.S. Technoeconomic study of a novel integrated thermal MSF–MED desalination technology. Desalination 2015, 371, 115–125. [Google Scholar] [CrossRef]
- El-Sayed, Y.; Silver, R. Fundamentals of distillation. In Principles of Desalination; Academic Press: New York, NY, USA, 1980; pp. 55–109. [Google Scholar]
- Anderson, M.A.; Cudero, A.L.; Palma, J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta 2010, 55, 3845–3856. [Google Scholar] [CrossRef]
- Sharaf, M.A.; Nafey, A.S.; García-Rodríguez, L. Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes. Energy 2011, 36, 2753–2764. [Google Scholar] [CrossRef]
- Ansari, M.S.A. Present Developments in the Design of SWRO Plants. J. Purity, Util. React. Environ. 2012, 1, 184–199. [Google Scholar]
- Farooque, A.M.; Jamaluddin, A.T.M.; Al-Reweli, A.R.; Jalaluddin, P.A.M.; Al-Marwani, S.M.; Al-Mobayed, A.A.; Qasim, A.H. Parametric analyses of energy consumption and losses in SWCC SWRO plants utilizing energy recovery devices. Desalination 2008, 219, 137–159. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654. [Google Scholar] [CrossRef]
- Chehayeb, K.M.; Lienhard, J.H. Entropy generation analysis of electrodialysis. Desalination 2017, 413, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Tado, K.; Sakai, F.; Sano, Y.; Nakayama, A. An analysis on ion transport process in electrodialysis desalination. Desalination 2016, 378, 60–66. [Google Scholar] [CrossRef]
- Greiter, M.; Novalin, S.; Wendland, M.; Kulbe, K.-D.; Fischer, J. Desalination of whey by electrodialysis and ion exchange resins: Analysis of both processes with regard to sustainability by calculating their cumulative energy demand. J. Membr. Sci. 2002, 210, 91–102. [Google Scholar] [CrossRef]
- Subramani, A.; Jacangelo, J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015, 75, 164–187. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.; Lu, H.; Turner, C.; Solis, S.; Hein, H. Solar and waste heat desalination by membrane distillation. Desalin. Water Purif. Res. Dev. Program. Rep. 2004, 81, 20. [Google Scholar]
- Amy, G.; Ghaffour, N.; Li, Z.; Francis, L.; Linares, R.V.; Missimer, T.; Lattemann, S. Membrane-based seawater desalination: Present and future prospects. Desalination 2017, 401, 16–21. [Google Scholar] [CrossRef]
- Kang, H.; Yang, Y.; Chang, Z.; Zheng, H.; Duan, Z. Performance of a two-stage multi-effect desalination system based on humidification–dehumidification process. Desalination 2014, 344, 339–349. [Google Scholar] [CrossRef]
- Hou, S.; Zeng, D.; Ye, S.; Zhang, H. Exergy analysis of the solar multi-effect humidification–dehumidification desalination process. Desalination 2007, 203, 403–409. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Bolto, B.; Hoang, M.; Xie, Z. Desalination by pervaporation: A review. Desalination 2016, 387, 46–60. [Google Scholar] [CrossRef]
- Korngold, E.; Korin, E.; Ladizhensky, I. Water desalination by pervaporation with hollow fiber membranes. Desalination 1996, 107, 121–129. [Google Scholar] [CrossRef]
- Kim, Y.; Logan, B.E. Microbial desalination cells for energy production and desalination. Desalination 2013, 308, 122–130. [Google Scholar] [CrossRef]
- Qu, Y.; Feng, Y.; Wang, X.; Liu, J.; Lv, J.; He, W.; Logan, B.E. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour. Technol. 2012, 106, 89–94. [Google Scholar] [CrossRef]
- Wang, H.; Ren, Z.J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 2013, 31, 1796–1807. [Google Scholar] [CrossRef]
- Saeed, H.M.; Husseini, G.A.; Yousef, S.; Saif, J.; Al-Asheh, S.; Abu Fara, A.; Azzam, S.; Khawaga, R.; Aidan, A. Microbial desalination cell technology: A review and a case study. Desalination 2015, 359, 1–13. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-B.; Park, K.-K.; Eum, H.-M.; Lee, C.-W. Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination 2006, 196, 125–134. [Google Scholar] [CrossRef]
- AlMarzooqi, F.A.; Al Ghaferi, A.A.; Saadat, I.; Hilal, N. Application of Capacitive Deionisation in water desalination: A review. Desalination 2014, 342, 3–15. [Google Scholar] [CrossRef]
- Kim, S.J.; Ko, S.H.; Kang, K.H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297. [Google Scholar] [CrossRef] [PubMed]
- Simmons, B.A.; Bradshaw, R.W.; Dedrick, D.E.; Cygan, R.T.; Greathouse, J.A.; Majzoub, E.H. Desalination Utilizing Clathrate Hydrates (LDRD Final Report); Sandia National Laboratories: Albuquerque, NM, USA, 2008. [Google Scholar]
- Babu, P.; Nambiar, A.; He, T.; Karimi, I.A.; Lee, J.D.; Englezos, P.; Linga, P. A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus. ACS Sustain. Chem. Eng. 2018, 6, 7. [Google Scholar] [CrossRef]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Chung, T.-S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Li, Z.; Valladares, R.; Li, Q.; Amy, G. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination 2011, 280, 160–166. [Google Scholar] [CrossRef]
- Banasiak, L.J.; Kruttschnitt, T.W.; Schäfer, A.I. Desalination using electrodialysis as a function of voltage and salt concentration. Desalination 2007, 205, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Thu, K. Adsorption Desalination: Theory & Experiments. 2010. Available online: https://core.ac.uk/download/pdf/48633234.pdf (accessed on 13 April 2020).
- Tian, L.; Tang, Y.; Wang, Y. Economic evaluation of seawater desalination for a nuclear heating reactor with multi-effect distillation. Desalination 2005, 180, 53–61. [Google Scholar] [CrossRef]
- Boran, F.E.; Genç, S.; Kurt, M.; Akay, D. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 2009, 36, 11363–11368. [Google Scholar] [CrossRef]
- Gude, G. Emerging Technologies for Sustainable Desalination Handbook; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Alaei Shahmirzadi, M.A.; Hosseini, S.S.; Luo, J.; Ortiz, I. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal. J. Environ. Manag. 2018, 215, 324–344. [Google Scholar] [CrossRef] [PubMed]
- Demir, H.; Mobedi, M.; Ülkü, S. A review on adsorption heat pump: Problems and solutions. Renew. Sustain. Energy Rev. 2008, 12, 2381–2403. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Hou, X.; Zhang, X.; Yuan, Z. A review on development of adsorption cooling—Novel beds and advanced cycles. Energy Convers. Manag. 2015, 94, 221–232. [Google Scholar] [CrossRef]
- Hassan, H.; Mohamad, A. A review on solar-powered closed physisorption cooling systems. Renew. Sustain. Energy Rev. 2012, 16, 2516–2538. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Oliveira, R. A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 2009, 13, 518–534. [Google Scholar] [CrossRef]
- Sadri, S.; Ameri, M.; Khoshkhoo, R.H. A new approach to thermo-economic modeling of adsorption desalination system. Desalination 2018, 428, 69–75. [Google Scholar] [CrossRef]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Faust, S.D.; Aly, O.M. Adsorption Processes for Water Treatment; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Ng, K.C.; Chua, H.T.; Chung, C.Y.; Loke, C.H.; Kashiwagi, T.; Akisawa, A.; Saha, B.B. Experimental investigation of the silica gel–water adsorption isotherm characteristics. Appl. Therm. Eng. 2001, 21, 1631–1642. [Google Scholar] [CrossRef]
- Leite, A.P.F.; Daguenet, M. Performance of a new solid adsorption ice maker with solar energy regeneration. Energy Convers. Manag. 2000, 41, 1625–1647. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Tempkin, M.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. Ussr 1940, 12, 327. [Google Scholar]
- Dubinin, M. The Equation of the Characteristic Curve of Activated Charcoal. Dokl. Akad. Nauk. SSSR 327–329. Available online: https://ci.nii.ac.jp/naid/10028158033/ (accessed on 13 April 2020).
- Thu, K.; Yanagi, H.; Saha, B.B.; Ng, K.C. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype. Int. J. Heat Mass Transf. 2013, 65, 662–669. [Google Scholar] [CrossRef]
- Hassan, H.Z.; Mohamad, A.A.; Alyousef, Y.; Al-Ansary, H.A. A review on the equations of state for the working pairs used in adsorption cooling systems. Renew. Sustain. Energy Rev. 2015, 45, 600–609. [Google Scholar] [CrossRef]
- Toth, J. State equation of the solid-gas interface layers. Acta Chim. Hung. 1971, 69, 311–328. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Wang, L. Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system. Energy 1999, 24, 605–624. [Google Scholar] [CrossRef]
- Wang, X.; Ng, K.C. Experimental investigation of an adsorption desalination plant using low-temperature waste heat. Appl. Therm. Eng. 2005, 25, 2780–2789. [Google Scholar] [CrossRef]
- Dieng, A.; Wang, R. Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology. Renew. Sustain. Energy Rev. 2001, 5, 313–342. [Google Scholar] [CrossRef]
- Shah, A.P.B. Review of Adsorption Refrigeration Technologies. Available online: http://nuicone.org/site/common/proceedings/Mechamical/oral/ME-17.pdf (accessed on 13 April 2020).
- Wang, Y.; Li, M.; Du, W.; Ji, X.; Xu, L. Experimental investigation of a solar-powered adsorption refrigeration system with the enhancing desorption. Energy Convers. Manag. 2018, 155, 253–261. [Google Scholar] [CrossRef]
- Zejli, D.; Benchrifa, R.; Bennouna, A.; Bouhelal, O. A solar adsorption desalination device: First simulation results. Desalination 2004, 168, 127–135. [Google Scholar] [CrossRef]
- Thu, K.; Kim, Y.-D.; Shahzad, M.W.; Saththasivam, J.; Ng, K.C. Performance investigation of an advanced multi-effect adsorption desalination (MEAD) cycle. Appl. Energy 2015, 159, 469–477. [Google Scholar] [CrossRef]
- Al-Juwayhel, F.; El-Dessouky, H.; Ettouney, H. Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps. Desalination 1997, 114, 253–275. [Google Scholar] [CrossRef]
- Youssef, P.G.; Al-Dadah, R.K.; Mahmoud, S.M.; Dakkama, H.J.; Elsayed, A. Effect of Evaporator and Condenser Temperatures on the Performance of Adsorption Desalination Cooling Cycle. Energy Procedia 2015, 75, 1464–1469. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.; Saha, B.B.; Chatterjee, P.K.; Sarkar, J.P. An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling. Appl. Energy 2013, 104, 554–567. [Google Scholar] [CrossRef]
- Saha, B.B.; Koyama, S.; Lee, J.B.; Kuwahara, K.; Alam, K.C.A.; Hamamoto, Y.; Akisawa, A.; Kashiwagi, T. Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller. Int. J. Multiph. Flow 2003, 29, 1249–1263. [Google Scholar] [CrossRef]
- Thu, K.; Saha, B.B.; Chakraborty, A.; Chun, W.G.; Ng, K.C. Study on an advanced adsorption desalination cycle with evaporator–condenser heat recovery circuit. Int. J. Heat Mass Transf. 2011, 54, 43–51. [Google Scholar] [CrossRef]
- Wang, X.; Ng, K.C.; Chakarborty, A.; Saha, B.B. How heat and mass recovery strategies impact the performance of adsorption desalination plant: Theory and experiments. Heat Transf. Eng. 2007, 28, 147–153. [Google Scholar] [CrossRef]
- Saha, B.B.; Boelman, E.C.; Kashiwagi, T. Computational analysis of an advanced adsorption-refrigeration cycle. Energy 1995, 20, 983–994. [Google Scholar] [CrossRef]
- Thu, K.; Chakraborty, A.; Kim, Y.-D.; Myat, A.; Saha, B.B.; Ng, K.C. Numerical simulation and performance investigation of an advanced adsorption desalination cycle. Desalination 2013, 308, 209–218. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, J.; Liu, C.; Lin, X.; Sun, Y. Experimental investigation on an adsorption desalination system with heat and mass recovery between adsorber and desorber beds. Desalination 2018, 446, 42–50. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ng, K.C.; Thu, K.; Saha, B.B.; Chun, W.G. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method. Appl. Therm. Eng. 2014, 72, 289–297. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ng, K.C.; Thu, K. Future sustainable desalination using waste heat: Kudos to thermodynamic synergy. Environ. Sci. Water Res. Technol. 2016, 2, 206–212. [Google Scholar] [CrossRef]
- Sadri, S.; Khoshkhoo, R.H.; Ameri, M. Optimum exergoeconomic modeling of novel hybrid desalination system (MEDAD+RO). Energy 2018, 149, 74–83. [Google Scholar] [CrossRef]
- Sarai Atab, M.; Smallbone, A.J.; Roskilly, A.P. A hybrid reverse osmosis/adsorption desalination plant for irrigation and drinking water. Desalination 2018, 444, 44–52. [Google Scholar] [CrossRef]
- Mitra, S.; Kumar, P.; Srinivasan, K.; Dutta, P. Performance evaluation of a two-stage silica gel + water adsorption based cooling-cum-desalination system. Int. J. Refrig. 2015, 58, 186–198. [Google Scholar] [CrossRef]
- Al-Ansari, A.; Ettouney, H.; El-Dessouky, H. Water–zeolite adsorption heat pump combined with single effect evaporation desalination process. Renew. Energy 2001, 24, 91–111. [Google Scholar] [CrossRef]
- Wang, X.; Chua, H.T.; Ng, K.C. Experimental investigation of silica gel–water adsorption chillers with and without a passive heat recovery scheme. Int. J. Refrig. 2005, 28, 756–765. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Saha, B.B.; Chakraborty, A. Study on a waste heat-driven adsorption cooling cum desalination cycle. Int. J. Refrig. 2012, 35, 685–693. [Google Scholar] [CrossRef]
- Mitra, S.; Srinivasan, K.; Kumar, P.; Murthy, S.S.; Dutta, P. Solar Driven Adsorption Desalination System. Energy Procedia 2014, 49, 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Youssef, P.G.; Mahmoud, S.M.; Al-Dadah, R.K. Performance analysis of four bed adsorption water desalination/refrigeration system, comparison of AQSOA-Z02 to silica-gel. Desalination 2015, 375, 100–107. [Google Scholar] [CrossRef]
- Thu, K.; Saha, B.B.; Chua, K.J.; Ng, K.C. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination. Int. J. Heat Mass Transf. 2016, 101, 1111–1122. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ng, K.C. An Improved Multievaporator Adsorption Desalination Cycle for Gulf Cooperation Council Countries. Energy Technol. 2017, 5, 1663–1669. [Google Scholar] [CrossRef] [Green Version]
- Thu, K.; Yanagi, H.; Saha, B.B.; Ng, K.C. Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme. Desalination 2017, 402, 88–96. [Google Scholar] [CrossRef]
- Thu, K.; Chakraborty, A.; Saha, B.B.; Chun, W.G.; Ng, K.C. Life-cycle cost analysis of adsorption cycles for desalination. Desalin. Water Treat. 2010, 20, 1–10. [Google Scholar] [CrossRef]
- Mitra, S.; Kumar, P.; Srinivasan, K.; Dutta, P. Simulation study of a two-stage adsorber system. Appl. Therm. Eng. 2014, 72, 283–288. [Google Scholar] [CrossRef]
- Mitra, S.; Kumar, P.; Srinivasan, K.; Dutta, P. Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system. Int. J. Refrig. 2016, 67, 174–189. [Google Scholar] [CrossRef]
- Mitra, S.; Thu, K.; Saha, B.B.; Dutta, P. Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system. Appl. Energy 2017, 206, 507–518. [Google Scholar] [CrossRef]
Water Supply Alternative | Energy Use (kWh/m3) | Reference |
---|---|---|
Minimum energy of separation (seawater at 35,000 ppm) | 0.9 | [1] |
Conventional treatment of surface water | 0.2–0.4 | [2] |
Brackish water desalination | 0.5–2.5 | [3] |
* SWRO desalination | 3–4 a | [3] |
Year | Plants to Be Decommissioned | Plants to Be Commissioned | ||
---|---|---|---|---|
Plant Name | Capacity (m3/d) | Plant Name | Capacity (m3/d) | |
2018 | Khafji Yanbu-I MSF Jeddah-IV MSF | 22,070 71,790 191,680 | Yanbu III Jeddah-4 | 550,000 400,000 |
2019 | Haql-SWRO Duba-SWRO Jubail-I MSF Jubail-II MSF | 5405 5647 130,000 869,800 | Haql-3 Duba-4 Alwajh-4 | 9000 9000 9000 |
2020 | Jubail-3 Rabigh-3 Yanbu-4 Ummluj-4 | 1,100,000 600,000 450,000 18,000 | ||
2025 | Shoaibah-I MSF Shoqaiq-I MSF Khobar-I MSF Khobar-II MSF | 141,880 86,272 145,829 205,568 | Shoaiba-4 Shuqaiq-3 Al-Khobar-4 | 1,000,000 325,000 775,000 |
2030 | Jeddah-I SWRO Jeddah-II SWRO Yanbu-II MSF Shoaibah-II Yanbu SWRO | 60,783 59,080 110,243 388,045 121,523 | Jeddah-5 Rabig-4 Ras Al-Khair Yanbu-5 | 400,000 600,000 1,000,000 400,000 |
Item | MSF/Unit | MED–TVC/Unit | SWRO/Skid | Comments |
---|---|---|---|---|
Typical unit size (m3/day) | 50,000–92,000 | 10,000–90,000 | 100–40,000 | Commercial unit size for SWCC plants |
Capital cost ($/m3/day) [15] | 1598 | 1860 | 1313 | |
Minimum electrical energy consumption (kWh/m3) [29] | 2.5 | 2 | 4–6 | Thermal plant efficiency 30% SWRO with energy recovery |
Thermal energy consumption (kWh/m3) [29] | 15.83 | 12.2 | None | Thermal plant efficiency 30% |
Equivalent energy consumption (kWh/m3) | 18.33 | 14.2 | None | |
CO2 (kg/m3) [15] | 15.6–25 | 7–17.6 | 1.7–2.8 | |
Decentralization | – | – | ✔ | MSF and MED not app. due to economy of scale |
Technology | Advantages | Drawbacks | Energy Cons. kWh/m3 |
---|---|---|---|
SWRO [16] |
|
| 2.5–5 [5] |
Multi-stage flashing (MSF) [25,30,31] |
|
| Electrical 2.5–4; thermal 57.14 [32] |
Multi-effect desalination (MED) [31] |
|
| Electrical 1.5–2; thermal 43.2 [5] |
Sea water reverse osmosis (SWRO) [33,34,35] |
|
| 3–4 [36] |
Electro-dialysis reversal (EDR) [37,38] |
|
| 2.036.6–8.7 [32] |
Ion exchange (IEX) [39] |
|
| |
Membrane distillation [40] |
|
| 43 without waste heat [41] 10.3 with waste heat 1 electrical energy [42] |
Humidification–dehumidification [43,44] |
|
| (300–500) or 120 with modified configuration [40] |
Pervaporation [45] |
|
| Energy required for pumping is 2 [45,46] |
Microbial desalination [47,48,49] |
|
| 0.16 produced energy/m3 of saline water [50] |
Capacitive-deionization technologies [51] |
|
| 1.96 [52]; 1.8 [40] 0.1–2.03 [53] |
Ion-concentration polarization [32] |
|
| 3.5 [54] |
Clathrate hydrates [55,56] |
|
| Estimated to be significantly lower than RO process due to absence of feed pressure requirement |
Forward osmosis [57,58] |
|
| 1.3–1.5 [59] |
Adsorption desorption desalination (ADD) |
|
| 1.38 [12] |
Isotherm | Nonlinear Form | Linear Form | Reference |
---|---|---|---|
Langmuir | [75] | ||
Freundlich | [76] | ||
Tempkin | [77] | ||
Dubinin–Radushkevich | [78] | ||
Dubinin–Astakhov | [79,80] | ||
Toth | [81] | ||
BET | [82] |
Ref. | System Configuration | Method | Adsorbent | Source Temp. (°C) | SDWP (m3/Tads/d) PR |
---|---|---|---|---|---|
[91,92] | 2-bed/single-stage evaporator | Theoretical | Zeolite | Steam | N/A PR > 1 |
[89] | 2-bed/3 multi-effect evaporator | Theoretical | Zeolite | Solar | N/A PR (3–4) |
[85] | 4-bed | Experimental | Silica gel | 85 | 4.7 |
[26] | 2- and 4-bed | Experimental | Silica gel, type RD | 65–85 | 4-bed/8.79–10 2-bed/3–5 |
[108] | 4-bed mode | Simulation | Silica gel, type RD | 85 | 8 |
[26] | 2- and 4-bed | Experimental and Simulation | Silica gel, type RD | 85 | 3–5 |
[100] | 2-bed (heat recovery) | Experiment | Silica gel, type RD | 70 | 9.2 |
[79] | 2-bed, evap.-cond. heat recovery | Experiment | Silica gel, type A++ | 85 | 13.46 |
[95] | 4-bed mode | Experiment | Silica gel, type RD | 85 | 2.4 |
[114] | 2-stage | Experiment | Silica gel, type RD | 85 | 1 |
[96] | 2-bed mode | Simulation | Silica gel, type RD | 85 | 10 |
[110] | 4-bed mode | Simulation | AQSOA-Z02 | 85 | 6.2 |
[111] | 1-bed, 2- evaporator | Simulation | Silica gel A+++ | 55–85 | 6.5 |
[104] | 2-bed, integrated evap./cond. | Simulation | Silica gel, type A++ | 85 | 26 |
[112] | CE–ADD | Simulation/experimental | Silica gel | 47 | |
[113] | 4-bed master/slave internal heat recovery | Simulation/experimental | Silica gel A+++ | 70 | 10 |
City | Plant | Length (km) Height (m) | Water Flow (M3/day) | Existing Plan Transmission Pipeline + Current Plants | Proposed Plan Decentralized-ADD without Pipeline | ||
---|---|---|---|---|---|---|---|
Water-Transmission Energy Cost (MUSD/year) | Emissions (tons CO2/year) | Water-Production Energy Cost (MUSD/year) | Emissions (tons CO2/year) | ||||
Makkah | Shoaibah | 90 240 | 550,000 | 82.9 | 653,943 | 12.8 | 101,671 |
Madinah | Yanbu | 162 631 | 450,000 | 99.5 | 784,530 | 10.5 | 83,186 |
Abha | Shoqaiq | 105 2084 | 100,000 | 25.1 | 198,165 | 2.3 | 18,485 |
Riyadh | Jubail | 400 612 | 950,000 | 290.6 | 2,291,034 | 22.2 | 175,615 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnajdi, O.; Wu, Y.; Kaiser Calautit, J. Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study. Water 2020, 12, 1111. https://doi.org/10.3390/w12041111
Alnajdi O, Wu Y, Kaiser Calautit J. Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study. Water. 2020; 12(4):1111. https://doi.org/10.3390/w12041111
Chicago/Turabian StyleAlnajdi, Othman, Yupeng Wu, and John Kaiser Calautit. 2020. "Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study" Water 12, no. 4: 1111. https://doi.org/10.3390/w12041111
APA StyleAlnajdi, O., Wu, Y., & Kaiser Calautit, J. (2020). Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study. Water, 12(4), 1111. https://doi.org/10.3390/w12041111