Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Studies Descriptions
2.2. Proposed Scenarios for PHAs Production
2.3. Mass and Energy Balances
2.4. Methodology for Economic Assessment
3. Results and Discussion
3.1. Mass and Energy Balances
3.2. Costs Associated with Bioplastics Production
3.3. Economic Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andreoli, C.V.; Sperling, M.; Fernandes, F. Sludge Treatment and Disposal; IWA Publishing: London, UK, 2007. [Google Scholar]
- Alloul, A.; Ganigué, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. Capture–ferment–upgrade: A three-step approach for the valorization of sewage organics as commodities. Environ. Sci. Technol. 2018, 52, 6729–6742. [Google Scholar] [CrossRef] [PubMed]
- Amen, T.W.M.; Eljamal, O.; Khalil, A.M.E.; Matsunaga, N. Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions. J. Environ. Chem. Eng. 2017, 5, 5002–5013. [Google Scholar] [CrossRef]
- Kleerebezem, R.; Joosse, B.; Rozendal, R.; Van Loosdrecht, M.C. Anaerobic digestion without biogas? Rev. Environ. Sci. Bio. 2015, 14, 787–801. [Google Scholar] [CrossRef] [Green Version]
- Morgan-Sagastume, F.; Heimersson, S.; Laera, G.; Werker, A.; Svanström, M. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. J. Clean. Prod. 2016, 137, 1368–1381. [Google Scholar] [CrossRef]
- World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, The New Plastics Economy—Rethinking the Future of Plastics. 2016. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/EllenMacArthurFoundation_TheNewPlasticsEconomy_Pages.pdf (accessed on 23 February 2019).
- Gholami, A.; Mohkam, M.; Rasoul-Amini, S.; Ghasemi, Y. Industrial production of polyhydroxyalkanoates by bacteria: Opportunities and challenges. Minerva Biotecnol. 2016, 28, 59–74. [Google Scholar]
- Chanprateep, S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 2010, 110, 621–632. [Google Scholar] [CrossRef]
- Castilho, L.R.; Mitchell, D.A.; Freire, D.M. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour. Technol. 2009, 100, 5996–6009. [Google Scholar] [CrossRef]
- Bluemink, E.; van Nieuwenhuijzen, A.F.; Wypkema, E.; Uijterlinde, C.A. Bio-plastic (poly-hydroxy-alkanoate) production from municipal sewage sludge in the Netherlands: A technology push or a demand driven process? Water Sci. Technol. 2016, 74, 353–358. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Frison, N.; Katsou, E.; Malamis, S.; Oehmen, A.; Fatone, F. Development of a novel process integrating the treatment of sludge reject water and the production of polyhydroxyalkanoates (PHAs). Environ. Sci. Technol. 2015, 49, 10877–10885. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, V.K.; Lo, S.L. Sludge: A waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev. 2013, 25, 708–728. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Van Loosdrecht, M.C.M. Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance. Biotechnol. Adv. 2004, 22, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Baetens, D.; Aurola, A.-M.; Foglia, A.; Dionisi, D.; van Loosdrecht, M.C.M. Gas chromatographic analysis of polyhydroxybutyrate in activated sludge: A round-robin test. Water Sci. Technol. 2002, 46, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Shang, L.; Ren, H.; Mi, Y.; Fan, D.; Jiang, M. Biosynthesis of polyhydroxyalkanoates: Current research and development. Afr. J. Biotechnol. 2009, 8, 709–714. [Google Scholar]
- Albuquerque, M.G.E.; Eiroa, M.; Torres, C.; Nunes, B.R.; Reis, M.A.M. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J. Biotechnol. 2007, 130, 411–421. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Stensel, H.D.; Tsuchihashi, R.; Burton, F.L.; Abu-Orf, M.; Bowden, G.; Pfrang, W.; Metcalf & Eddy Inc. Wastewater Engineering: Treatment & Resource Recovery, 5th ed.; McGraw Hill: New York, NY, USA, 2014. [Google Scholar]
- Takács, I. Experiments in Activated Sludge Modelling. Ph.D. Thesis, Ghent University, Gent, Belgium, 2008. [Google Scholar]
- Fernández-Dacosta, C.; Posada, J.A.; Kleerebezem, R.; Cuellar, M.C.; Ramirez, A. Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment. Bioresour. Technol. 2015, 185, 368–377. [Google Scholar] [CrossRef]
- Bengtsson, S.; Werker, A.; Visser, C.; Korving, L. PHARIO: Stepping Stone to a Sustainable Value Chain for PHA Bioplastic Using Municipal Activated Sludge; Stichting Toegepast Onderzoek Waterbeheer: Amersfoort, The Netherlands, 2017; pp. 1–93. [Google Scholar]
- Conca, V.; da Ros, C.; Valentino, F.; Eusebi, A.L.; Frison, N.; Fatone, F. Long-term validation of polyhydroxyalkanoates production potential from the sidestream of municipal wastewater treatment plant at pilot scale. Chem. Eng. J. 2020, 390, 124627. [Google Scholar] [CrossRef]
- Siegrist, H.; Salzgeber, D.; Eugster, J.; Joss, A. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci. Technol. 2008, 57, 383–388. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Zhang, C.; Xie, G.J.; Zhou, X.; Qian, J.; Wang, D. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate. Sci. Rep. 2016, 6, 19713. [Google Scholar] [CrossRef] [Green Version]
- Bolzonella, D.; Innocenti, L.; Cecchi, F. Biological nutrient removal wastewater treatments and sewage sludge anaerobic mesophilic digestion performances. Water Sci. Technol. 2002, 46, 199–208. [Google Scholar] [CrossRef]
- Remosa Tarifas 2014. Available online: https://es.scribd.com/document/289436343/REMOSA-tarifas-2014 (accessed on 23 February 2019).
- Paredes, C. Cambio Tecnológico y Disponibilidad de Gas Natural Como Opción Para Reducir Emisiones de MP2,5 en el Concepción Metropolitano. Master’s Thesis, Universidad de Concepción, Concepción, Chile, 2013. [Google Scholar]
- Informe Final Licitación Pública N° 1588-151-LE09. Consultoría de Apoyo a los Procesos de Normas Ambientales en Sistemas Hídricos: Estimación de Costos de Abatimiento de Contaminantes en Residuos Líquidos. Available online: http://metadatos.mma.gob.cl/sinia/articles-50002_recurso_2.pdf (accessed on 23 February 2019).
- Couper, J.R.; Penney, W.R.; Fair, J.R. Chemical Process Equipment-Selection and Design, 2nd ed.; Gulf Professional Publishing: Houston, TX, USA, 2009; pp. 1–819. [Google Scholar] [CrossRef]
- ENEL. Available online: https://www.enel.cl/es/clientes/informacion-util/tarifas-y-reglamentos/tarifas.html (accessed on 23 February 2019).
- Mudliar, S.N.; Vaidya, A.N.; Suresh, K.M.; Dahikar, S.; Chakrabarti, T. Techno-economic evaluation of PHB production from activated sludge. Clean Technol. Environ. Policy 2008, 10, 255–262. [Google Scholar] [CrossRef]
- Werker, A.; Bengtsson, S.; Korving, L.; Hjort, M.; Anterrieu, S.; Alexandersson, T.; Morgan-Sagastume, F. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment–PHARIO. Water Sci. Technol. 2018, 78, 2256–2269. [Google Scholar] [CrossRef] [PubMed]
- Van, D.P.; Fujiwara, T.; Leu Tho, B.; Toan, S.; Phu, P.; Hoang Minh, G.; Minh, G.H. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ. Eng. Res. 2020, 25, 1–17. [Google Scholar] [CrossRef] [Green Version]
Mass Balances | |
---|---|
Unit Operation | Values |
Primary settling | Solids removal efficiency: 60% Primary sludge concentration: 60 g VSS/L COD/VSS ratio of primary sludge: 1.8 g/g |
Activated sludge process | Solids retention time (SRT): 3 d Biomass yield: 0.43 g VSS/g CODconsumed [18] Decay coefficient: 0.24 d−1 [18] No biodegradable fraction of heterotrophic biomass (Xp): 0.15 [18] Solids concentration in the effluent: 20 mg VSS/L 1.42 g COD/g VSS for the biodegradable fraction of heterotrophic biomass [18] 1.55 g COD/g VSS for XI COD fraction [19] 1.42 g COD/g VSS for Xp heterotrophic biomass fraction [18] |
Thickening units | Primary sludge-thickened concentration: 60 g VSS/L WAS-thickened concentration: 40 g VSS/L |
Anaerobic reactors | Specific methane production: 0.35 N m3 CH4/kg CODdegraded All biodegradable COD is converted to methane or acetic acid Methane fraction in biogas: 65% Biomass yield: 0.08 g VSS/g CODconsumed [18] Decay coefficient: 0.03 d−1 [18] |
Sludge dewatering | Solids concentration at outlet: 250 g/L Solids capture efficiency: 96% TSS/VSS ratio: 0.75 g/g |
PHAs production | Biomass yield: 0.50 g COD-biomass/g CODconsumed (biomass enrichment stage) (Based on [20]) 1.67 g COD/g PHA [21] PHA yield: 0.6 g COD-PHA/g COD (PHA accumulation stage) (Based on [22]) Solids capture efficiency: 96% (PHA rich biomass dewatering) |
Energy Balances | Values |
Aeration | 1 kW·h/kg O2 [18] |
Overall mixing and pumping | 0.1 kW·h/m3influent (used to calculate the current WWTP energy consumption) (Based on [23]) |
Thermal energy required for heating anaerobic systems | 24% of CH4 generated |
Primary settling | 0.0005 kW/m3 [5] |
Gravity belt thickener | 0.23 kW/(m3/h) [5] |
Centrifuge | 1.875 kW/(m3/h) [5] |
Thickener sludge tank | 0.001 (kWh/m3) [24] |
Pumping energy required for biomass enrichment and PHA-accumulation bioreactors | Calculated based on the inlet flowrate, and considering the reactor height and a pump energy efficiency of 0.7. |
Mixing anaerobic reactors | 0.006 kW/m3 [25] |
Item | Actual | Calculated | Bioplastic Production | |
---|---|---|---|---|
Enriched Sludge | Mixed Sludge | |||
Large WWTP | ||||
Net methane generation (m3/d) | 39,000 | 40,291 | 0 | 0 |
Sludge generation (kg/d) | 300,000 | 287,824 | 282,180 (−2.0%) | 270,738 (−5.9%) |
O2 consumption (kg/d) | --- | 79,843 | 131,905 (+65.2%) | 127,655 (+59.9%) |
Energy consumption (kWh/d) | 157,300 | 157,603 | 210,224 (+33.4%) | 205,973 (+30.7%) |
PHAs production (kg/d) | 0 | 0 | 16,342 | 15,067 |
Small WWTP | ||||
Net methane generation (m3/d) | --- | 0 | 0 | 0 |
Sludge generation (kg/d) | --- | 9431 | 4480 (−52.5%) | 4085 (−56.7%) |
O2 consumption (kg/d) | --- | 2630 | 2565 (−2.5%) | 2499 (−5.0%) |
Energy consumption (kWh/d) | --- | 3880 | 3827 (−1.4%) | 3761 (−3.1%) |
PHAs production (kg/d) | --- | 0 | 254 | 234 |
Economic Item | Large WWTP | Small WWTP |
---|---|---|
A. Capital costs | ||
Buffer tanks | 102 | 49 |
Biomass enrichment and PHAs-accumulation reactor | 23,714 | 1006 |
Acidogenic fermentation reactors | - | 197 |
Anaerobic digestion reactors | - | 131 |
Primary settling tank | - | 210 |
Thickening and dewatering units | 275 | 109 |
Storage PHA tanks | 414 | 7 |
Conveyor belt | 30 | 23 |
Pumps | 156 | 209 |
Heat exchanger | - | 3 |
Boiler | - | 3 |
Total | 24,691 | 1947 |
B. Other capital costs | ||
Piping | 3703 | 292 |
Instrumentation/electricity | 6172 | 486 |
Detailed engineering costs | 2469 | 195 |
Civil works | 8394 | 662 |
Start-up of PHAs production plant | 2963 | 234 |
Total | 23,701 | 1869 |
Total capital costs (A + B) (MUS$) | 48,392 | 3816 |
C. Operating and maintenance costs | ||
Equipment operation | 2135 | −73 |
Maintenance | 247 | 19 |
Insurance | 123 | 10 |
Operators | 63 | 21 |
Total (MUS$/year) | 2568 | −23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crutchik, D.; Franchi, O.; Caminos, L.; Jeison, D.; Belmonte, M.; Pedrouso, A.; Val del Rio, A.; Mosquera-Corral, A.; Campos, J.L. Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? Water 2020, 12, 1118. https://doi.org/10.3390/w12041118
Crutchik D, Franchi O, Caminos L, Jeison D, Belmonte M, Pedrouso A, Val del Rio A, Mosquera-Corral A, Campos JL. Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? Water. 2020; 12(4):1118. https://doi.org/10.3390/w12041118
Chicago/Turabian StyleCrutchik, Dafne, Oscar Franchi, Luis Caminos, David Jeison, Marisol Belmonte, Alba Pedrouso, Angeles Val del Rio, Anuska Mosquera-Corral, and José Luis Campos. 2020. "Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants?" Water 12, no. 4: 1118. https://doi.org/10.3390/w12041118
APA StyleCrutchik, D., Franchi, O., Caminos, L., Jeison, D., Belmonte, M., Pedrouso, A., Val del Rio, A., Mosquera-Corral, A., & Campos, J. L. (2020). Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? Water, 12(4), 1118. https://doi.org/10.3390/w12041118