Multivariate Statistical Analysis of Hydrochemical Data and Stable Isotopes of Groundwater Contaminated with Nitrate at Huay Sai Royal Development Study Center and Adjacent Areas in Phetchaburi Province, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Groundwater Sampling Method
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Groundwater Flow and Hydrogeochemical Characteristics
3.2. Multivariate Analysis
3.3. Stable Isotope of Groundwater (δ18O, δ2H)
4. Discussion
4.1. Hydrogeochemical Processes That Affect Groundwater Chemistry
4.2. Multivariate Analysis
4.3. Stable Isotope of Groundwater (δ18O, δ2H)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fraiture, C.D.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Khodran, H.; Al-Zahrani, A.l.; Baig, M.B. Water in the Kingdom of Saudi Arabia: Sustainable management options. J. Anim. Plant Sci. 2011, 21, 601–604. [Google Scholar]
- Aiuppa, A.; Bellomo, S.; Brusca, L.; D’Alessandro, W.; Federio, C. Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Appl. Geochem. 2003, 18, 863–882. [Google Scholar] [CrossRef]
- Department of Agriculture. Report of Polluted Situation of Thailand; Department of Agriculture, Ministry of Natural Resources and Environment: Bangkok, Thailand, 2017. (In Thai)
- Shindo, J.; Okamoto, K.; Kawashima, H. Prediction of the environmental effects of excess nitrogen caused by increasing food demand with rapid economic growth in eastern Asian countries. Ecol. Model. 2006, 193, 703–720. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Aravena, R.; Auge, M.; Bucich, N.; Nagy, M.I. Evalution of the origin of groundwater nitrate in the city La Plata, Argentina, using isotope technique. In Proceedings of the Hydrogeology and Land Use Management, XXIX IAH Congress, Bratislava, Slovakia, 6–10 September 1999. [Google Scholar]
- Jiang, Y.; Wu, Y.; Groves, C.; Yuan, D.; Kambesis, P. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J. Contam. Hydrol. 2009, 109, 49–61. [Google Scholar] [CrossRef]
- William, A.; Johnson, J.; Lund, L.; Kabala, Z. Spatial and temporal variations in nitrate contamination of a rural aquifer, California. J. Environ. Qual. 1998, 27, 1147–1157. [Google Scholar] [CrossRef]
- Lockhart, K.M.; King, A.M.; Harter, T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 2013, 151, 140–154. [Google Scholar] [CrossRef]
- Greer, F.R.; Shannon, M. Infant methemoglobinemia: The role of dietary nitrate in food and water. Pediatrics 2005, 116, 784–786. [Google Scholar] [CrossRef] [Green Version]
- Townsend, A.R.; Howarth, R.W.; Bazzaz, F.A.; Booth, M.S.; Cleveland, C.C.; Collinge, S.K.; Dobson, A.P.; Epstein, P.R.; Holland, E.A.; Keeney, D.R.; et al. Human health effects of a changing global nitrogen cycle. Front. Ecol. Environ. 2003, 1, 240–246. [Google Scholar] [CrossRef]
- Chaijan, C. Evaluation of Water Demand in Huay Sai Royal Development Study Center and Adjacent Areas, Amphoe Cha-Am, Changwat Phetchaburi. Bachelor’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2012. (In Thai). [Google Scholar]
- Spalding, R.F.; U, Z.K.; Hyun, S.W.; Martin, G.E.; Burbach, M.E.; Yang, S.I.I.; Kim, M.; Exner, M.E.; Song, S.J. Source Identification of Nitrate on Cheju Island, South Korea. Nutr. Cycl. Agroecosyst. 2001, 61, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Spalding, R.F.; Exner, M.E. Occurrence of nitrate in groundwater-A review. J. Environ. Qual. 1993, 22, 392–402. [Google Scholar] [CrossRef]
- Kaown, D.; Koh, D.C.; Mayer, B.; Lee, K.K. Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agric. Ecosyst. Environ. 2009, 132, 223–231. [Google Scholar] [CrossRef]
- Mungdee, S. Evaluation of Groundwater Recharge Potential Using GIS Technique in Huay Sai Royal Development Study Center and Adjacent Areas, Amphoe Cha-Am, Changwat Phetchaburi. Bachelor’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2012. (In Thai). [Google Scholar]
- Konkul, J.; Rojborwornwittaya, W.; Chotpantarat, S. Hydrogeologic characteristics and groundwater potentiality mapping using potential surface analysis in Huay Sai area, Phetchaburi province. Geosci. J. 2014, 18, 89–103. [Google Scholar] [CrossRef]
- Thailand Meteorological Department (TMD). The Climate of Thailand; Thai Meteorological Department: Bangkok, Thailand, 2012.
- Land Development Department (LDD). Land Use Map of Phetchaburi Province 2009; Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2009. (In Thai)
- Magesh, N.S.; Krishnakumar, S.; Chandrasekar, N.; Soundranayagam, J.P. Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arab. J. Geosci. 2013, 6, 4179–4189. [Google Scholar] [CrossRef]
- Waleeittikul, A. Hydrogeochemical Characteristics of Aquifers in Huay Sai Royal Development Study Center and Adjacent Areas, Amphoe Cha-Am, Changwat Phetchaburi. Bachelor’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2013. (In Thai). [Google Scholar]
- Mohapatra, P.K.; Vijay, R.; Pujari, P.R.; Sundaray, S.K.; Mohanty, B.P. Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: A multivariate statistical approach. Water Sci. Technol. 2011, 64, 809–817. [Google Scholar] [CrossRef]
- Thivya, C.S.; Thilagavathi, R.; Prasanna, M.V.; Singaraja, C.; Adithya, V.S.; Nepolian, M. A multivariate statistical approach to identify the spatio-temporal variation of geochemical process in a hard rock aquifer. Environ. Monit. Assess. 2015, 187, 15. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, S.R. Hydrogeochemical Characteristics of Groundwater Highly Polluted with Nitrate in an Agricultural Area of Hongseong, Korea. Water 2016, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Belkhiri, L.; Boudoukha, A.; Mouni, L. A multivariate Statistical Analysis of Groundwater Chemistry Data. Int. J. Environ. Res. 2011, 5, 537–544. [Google Scholar]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. Available online: http://www-naweb.iaea.org/napc/ih/index.html (accessed on 15 July 2017).
- Sonkahmble, S.; Sahya, A.; Mondal, N.C.; Harikumar, P. Appraisal and evolution of hydrochemical processes from proximity basalt and granite areas of Deccan Volcanic Province (DVP) in India. J. Hydrol. 2012, 438, 181–193. [Google Scholar] [CrossRef]
- Al-ahmadi, M.E.; EI-Fiky, A.A. Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. J. King Saud Univ. Sci. 2009, 21, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, V.; Singh, D.S.; Singh, A.K. Water quality of the Chhoti Gandak River using principal component analysis, Ganga Plain, India. J. Earth Syst. Sci. 2010, 119, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Sabseree, J. Learning about Box Plot. Quality 2010, 16, 35–37. (In Thai) [Google Scholar]
- Mousavi, S.R.; Balali-Mood, M.; Riahi-Zanjani, B.; Sadeghi, M. Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters. J. Res. Med. Sci. 2013, 18, 65–69. [Google Scholar]
- Hosono, T.; Tokunaga, T.; Kagabu, M.; Nakata, H.; Orishikida, T.; Lin, I.T.; Shimada, J. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Res. 2013, 47, 2661–2675. [Google Scholar] [CrossRef]
- Kolpin, D.; Burkart, M.; Goolsby, D. Nitrate in groundwater of the midwestern United States: A regional on relations to land use and soil properties. In Proceedings of the Impact of Land-Use Change on Nutrient Loads from Diffuse Sources, IUGG 99 Symposium HS03, Birmingham, UK, 15 July 1999. [Google Scholar]
- Madison, R.J.; Brunett, J.O. Overview of the Occurrences of Nitrate in Groundwater of the United States; U.S. Geological Survey Water Supply Paper 2275; U.S. Geological Survey: Washington, DC, USA, 1985; pp. 93–105.
- Choi, W.J.; Han, G.H.; Lee, S.M.; Lee, G.T.; Yoon, K.S.; Choi, S.M.; Ro, H.M. Impact of land-use types on nitrate concentration and δ15N in unconfined groundwater in rural areas of Korea. Agric. Ecosyst. Environ. 2017, 120, 259–268. [Google Scholar] [CrossRef]
- Koh, D.C.; Ko, K.S.; Kim, Y.; Lee, S.G.; Chang, H.W. Effect of agricultural land use on the chemistry of groundwater from basaltic aquifer, Jeju Island, South Korea. Hydrogeol. J. 2007, 5, 727–743. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Settings; U.S.-EPA/600/2-85/018; EPA: Washington, DC, USA, 1987.
- Alam, F.; Umar, R.; Ahmed, S.; Dar, F.A. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab. J. Geosci. 2014, 7, 927–937. [Google Scholar] [CrossRef]
- Parkchai, T. Factors and Mechanisms in Groundwater Contamination from Nitrate at Huay Sai Royal Development Study Center and Adjacent Areas in Phetchaburi Province. Master’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2015. (In Thai). [Google Scholar]
- Zhang, Y.; Zhou, A.; Zhou, J.; Liu, C.; Cai, H.; Liu, Y.; Xu, W. Evaluating the Sources and Fate of Nitrate in the Alluvial Aquifers in the Shijiazhuang Rural and Suburban Area, China: Hydrochemical and Multi-Isotopic Approaches. Water 2015, 7, 1515–1537. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yamanaka, T. Tracing groundwater recharge sources in a mountain-plain transitional area using stable isotopes and hydrochemistry. J. Hydrol. 2012, 464, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Department of National Health and Welfare (Canada). Guideline for Canadian Drinking Water Quality; Supporting Documentation; CRC Press: Ottawa, ON, Canada, 1978.
- Phelan, D.J. Water Levels, Chloride Concentrations, and Pumpage in the Coastal Aquifers of Delaware and Maryland; USGS Water Resources Investigations Report 87 4229; Dialog Abstract No. 602039; CRC Press: Washington, DC, USA; U.S. Geological Survey: Washington, DC, USA, 1987.
- Morales, E.C. Chemical quality of deep well waters in Cavite, Philippines. Water Qual. Bull. 1987, 12, 43–45. [Google Scholar]
- Tang, C.; Chen, J.; Shen, Y. Long-term effect of wastewater irrigation on nitrate in groundwater in the North China Plain, Wastewater Re-use and Groundwater Quality. In Proceedings of the IUGG2003 Symposium HS04, Sapporo, Japan, 3–11 July 2003. [Google Scholar]
- Gu, B.; Ge, Y.; Chang, S.X.; Luo, W.D.; Chang, J. Nitrate in groundwater of China: Sources and driving forces. Glob. Environ. Chang. 2013, 23, 1112–1121. [Google Scholar] [CrossRef]
- Fenech, C.; Rock, L.; Nolan, K.; Tobin, J.; Morrissey, A. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: A review. Water Res. 2012, 46, 2023–2041. [Google Scholar] [CrossRef]
- Chotpantarat, S.; Boonkaewwan, S. Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrol. Sci. J. 2018, 63, 1386–1407. [Google Scholar] [CrossRef]
- Ratchawang, S.; Chotpantarat, S. The leaching potential of pesticide in Song Phi Nong district, Suphan Buri province, Thailand. Environ. Asia 2019, 12, 112–120. [Google Scholar]
- Sonthiphand, P.; Ruangroengkulrith, S.; Mhuantong, W.; Charoensawan, V.; Chotpantarat, S.; Boonkaewwan, S. Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environ. Sci. Pollut. Res. 2019, 26, 26765–26781. [Google Scholar] [CrossRef]
- Ratchawang, S.; Chotpantarat, S. Nitrate contamination in groundwater in sugarcane field, Suphan Buri province, Thailand. Int. J. Recent Technol. Eng. 2019, 8, 239–242. [Google Scholar]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Liu, Q.; Suzuki, Y. Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: A case study of the Piedmont of South Taihang Mountains, China. Environ. Sci. Process. Impacts 2014, 16, 2764–2773. [Google Scholar] [CrossRef]
- Timofeeff, M.N.; Lowenstein, T.K.; Da Silva, M.A.M.; Harris, N.B. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochim. Cosmochim. Acta 2006, 70, 1977–1994. [Google Scholar] [CrossRef]
- Sameer, V.Y.; Hampannavar, U.S.; Purandara, B.K. Assessment of chloride concentration in groundwater: A case study for Belgaum City. Int. J. Environ. Sci. 2011, 2, 271–280. [Google Scholar]
- Janardhana Raju, N.; Ram, P.; Dey, S. Groundwater Quality in the Lower Varuna River Basin, Varanasi District, Uttar Pradesh. J. Geol. Soc. India 2009, 73, 178–192. [Google Scholar] [CrossRef]
- Momeni, A.A.; Khanlari, G.R.; Heidari, M.; Sepahi, A.A.; Bazvand, E. New engineering geological weathering classifications for granitoid rocks. Eng. Geol. 2015, 185, 43–51. [Google Scholar] [CrossRef]
- Department of Mineral Resources (DMR). The Classification of Geology and Mineral Resources in Phetchaburi District, Thailand; CRC Press: Boca Raton, FL, USA, 2008. (In Thai)
- Sae-Ju, J.; Chotpantarat, S.; Thitimakorn, T. Hydrochemical, geophysical and multivariate statistical investigation of the seawater intrusion in the coastal aquifer at Phetchaburi Province. Thail. J. Asian Earth Sci. 2020, 191, 140165. [Google Scholar] [CrossRef]
Seasons | Statistic | Surface Elevation (m, amsl) | pH | EC (µS/cm) | Temp (°C) | ORP (mV) | TDS (mg/L) |
---|---|---|---|---|---|---|---|
Rainy | Min | 21.0 | 6.3 | 2.0 | 24.9 | −175.0 | 1.3 |
Max | 130.0 | 8.0 | 4270.0 | 37.7 | 171.1 | 2430.0 | |
Average | 63.28 | 7.2 | 1203.1 | 28.5 | 26.0 | 693.6 | |
25% | 54.00 | 7.0 | 1022.5 | 26.8 | −50.2 | 581.0 | |
Median | 59.00 | 7.2 | 1241.0 | 28.5 | 54.5 | 665.0 | |
75% | 69.00 | 7.3 | 1335.0 | 29.4 | 101.8 | 749.0 | |
Summer | Min | 20.0 | 6.7 | 153.5 | 25.0 | −297.9 | 96.4 |
Max | 140.0 | 9.2 | 4450.0 | 32.0 | 251.1 | 2490.0 | |
Average | 62.1 | 7.5 | 1027.9 | 28.9 | 102.2 | 587.3 | |
25% | 47.63 | 7.1 | 554.0 | 28.0 | 38.7 | 340.5 | |
Median | 54.5 | 7.4 | 824.0 | 29.0 | 145.9 | 494.0 | |
75% | 67.6 | 7.7 | 1279.0 | 30.0 | 185.3 | 687.0 |
Season | Statistic | Ca2+ (mg/L) | Mg2+ (mg/L) | Na+ (mg/L) | K+ (mg/L) | HCO3− (mg/L) | CO32− (mg/L) | NO3− (mg/L) | SO42− (mg/L) | Cl− (mg/L) | Br− (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
Rainy | Min | 3.9 | 0.3 | 16.9 | 2.2 | 10.0 | 2.0 | 0.03 | 0.2 | 12.5 | 0.4 |
Max | 227.0 | 59.0 | 685.2 | 34.2 | 212.0 | 18.0 | 49.7 | 202.2 | 528.1 | 8.8 | |
Average | 86.7 | 29.6 | 144.0 | 10.3 | 86.8 | 7.8 | 6.02 | 27.0 | 149.2 | 3.1 | |
25% | 46.5 | 20.3 | 85.8 | 6.3 | 65.0 | 4.0 | 0.6 | 4.3 | 81.5 | 2.6 | |
Median | 76.8 | 30.7 | 106.3 | 7.9 | 86.0 | 6.0 | 2.9 | 11.8 | 143.6 | 2.9 | |
75% | 112.4 | 43.1 | 171.7 | 11.6 | 103.0 | 10.0 | 6.1 | 24.9 | 175.6 | 3.5 |
Variables | T | pH | ORP | EC | Na+ | K+ | Ca2+ | Mg2+ | Alkalinity | Cl− | SO42− | TDS | Br− | NO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | 1.000 | |||||||||||||
pH | 0.176 | 1.000 | ||||||||||||
ORP | −0.151 | 0.024 | 1.000 | |||||||||||
EC | 0.039 | −0.011 | −0.115 | 1.000 | ||||||||||
Na+ | −0.194 | 0.167 | −0.064 | 0.689 | 1.000 | |||||||||
K+ | 0.044 | 0.109 | 0.033 | 0.224 | 0.213 | 1.000 | ||||||||
Ca2+ | −0.108 | −0.042 | 0.336 | 0.096 | 0.130 | −0.032 | 1.000 | |||||||
Mg2+ | −0.044 | −0.301 | 0.080 | 0.371 | 0.087 | 0.035 | 0.161 | 1.000 | ||||||
alkalinity | −0.172 | −0.015 | 0.000 | 0.712 | 0.715 | 0.031 | 0.303 | 0.442 | 1.000 | |||||
Cl− | −0.036 | 0.113 | −0.045 | 0.630 | 0.671 | 0.281 | 0.313 | 0.269 | 0.526 | 1.000 | ||||
SO42− | −0.209 | 0.178 | 0.103 | 0.080 | 0.367 | 0.022 | 0.292 | −0.151 | 0.302 | 0.523 | 1.000 | |||
TDS | −0.077 | 0.024 | −0.140 | 0.879 | 0.802 | 0.253 | 0.163 | 0.370 | 0.718 | 0.726 | 0.141 | 1.000 | ||
Br− | −0.165 | 0.000 | −0.088 | 0.737 | 0.705 | 0.154 | 0.267 | 0.467 | 0.739 | 0.864 | 0.364 | 0.779 | 1.000 | |
NO3− | −0.076 | 0.009 | 0.295 | 0.033 | 0.149 | 0.534 | 0.007 | −0.112 | −0.020 | 0.204 | 0.289 | 0.027 | 0.078 | 1.000 |
Component | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
T | −0.076 | −0.002 | 0.069 | −0.057 | 0.885 |
pH | 0.073 | 0.020 | 0.726 | 0.016 | 0.392 |
ORP | −0.173 | 0.253 | −0.068 | 0.768 | −0.065 |
EC | 0.878 | 0.083 | −0.165 | −0.093 | 0.142 |
Na+ | 0.843 | 0.118 | 0.230 | −0.067 | −0.168 |
K+ | 0.192 | 0.847 | −0.023 | −0.080 | 0.162 |
Ca2+ | 0.230 | −0.144 | 0.033 | 0.801 | −0.028 |
Mg2+ | 0.416 | −0.075 | −0.708 | 0.238 | 0.098 |
alkalinity | 0.834 | −0.124 | −0.098 | 0.166 | −0.126 |
Cl− | 0.831 | 0.181 | 0.193 | 0.177 | −0.019 |
SO42− | 0.324 | 0.078 | 0.601 | 0.328 | −0.401 |
TDS | 0.928 | 0.081 | −0.098 | −0.080 | 0.042 |
Br− | 0.915 | 0.025 | −0.043 | 0.114 | −0.107 |
NO3− | 0.010 | 0.865 | 0.126 | 0.167 | −0.177 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotpantarat, S.; Parkchai, T.; Wisitthammasri, W. Multivariate Statistical Analysis of Hydrochemical Data and Stable Isotopes of Groundwater Contaminated with Nitrate at Huay Sai Royal Development Study Center and Adjacent Areas in Phetchaburi Province, Thailand. Water 2020, 12, 1127. https://doi.org/10.3390/w12041127
Chotpantarat S, Parkchai T, Wisitthammasri W. Multivariate Statistical Analysis of Hydrochemical Data and Stable Isotopes of Groundwater Contaminated with Nitrate at Huay Sai Royal Development Study Center and Adjacent Areas in Phetchaburi Province, Thailand. Water. 2020; 12(4):1127. https://doi.org/10.3390/w12041127
Chicago/Turabian StyleChotpantarat, Srilert, Tewanopparit Parkchai, and Wanlapa Wisitthammasri. 2020. "Multivariate Statistical Analysis of Hydrochemical Data and Stable Isotopes of Groundwater Contaminated with Nitrate at Huay Sai Royal Development Study Center and Adjacent Areas in Phetchaburi Province, Thailand" Water 12, no. 4: 1127. https://doi.org/10.3390/w12041127
APA StyleChotpantarat, S., Parkchai, T., & Wisitthammasri, W. (2020). Multivariate Statistical Analysis of Hydrochemical Data and Stable Isotopes of Groundwater Contaminated with Nitrate at Huay Sai Royal Development Study Center and Adjacent Areas in Phetchaburi Province, Thailand. Water, 12(4), 1127. https://doi.org/10.3390/w12041127