Linking the Recent Glacier Retreat and Depleting Streamflow Patterns with Land System Changes in Kashmir Himalaya, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Datasets and Methods
2.2.1. Quantifying Glacier Changes
2.2.2. Historical Sstreamflow Patterns
2.2.3. Downstream Land System Changes
3. Results
3.1. Glacier Area Changes
3.2. Changes in Glacier Snout
3.3. Changes in ELA
3.4. Streamflow Patterns
3.5. Quantifying Land System Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bahuguna, I.M.; Kulkarni, A.V.; Nayak, S.; Rathore, B.P.; Negi, H.S.; Mathur, P. Himalayan glacier retreat using IRS 1C PAN stereo data. Int. J. Remote Sens. 2007, 28, 437–442. [Google Scholar] [CrossRef]
- Bhambri, R.; Bolch, T.; Chaujar, R.K.; Kulshreshtha, S.C. Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J. Glaciol. 2011, 57, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Farooq Azam, M.; Wagnon, P.; Berthier, E.; Vincent, C.; Fujita, K.; Kargel, J.S. Review of the status and mass changes of Himalayan-Karakoram glaciers. J. Glaciol. 2018, 64, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Minora, U.; Bocchiola, D.; D’Agata, C.; Maragno, D.; Mayer, C.; Lambrecht, A.; Vuillermoz, E.; Senese, A.; Compostella, C.; Smiraglia, C.; et al. Glacier area stability in the Central Karakoram National Park (Pakistan) in 2001–2010. Prog. Phys. Geogr. Earth Environ. 2016, 40, 629–660. [Google Scholar] [CrossRef]
- Farinotti, D.; Immerzeel, W.W.; de Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.U.N.; Wilkes, A. The Melting Himalayas: Cascading Effects of Climate Change on Water, Biodiversity, and Livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Tripathi, N.K. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J. Hydrol. 2014, 511, 49–60. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Bhardwaj, A.; Sam, L.; Shekhar, M.; Singh, A.; Kumar, R.; Gupta, A. Changing climate and glacio-hydrology in Indian Himalayan Region: A review. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Pratt-Sitaula, B.; Burbank, D.W.; Heimsath, A.M.; Humphrey, N.F.; Oskin, M.; Putkonen, J. Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal. Geophys. Res. Lett. 2011, 38, L24502. [Google Scholar] [CrossRef] [Green Version]
- Racoviteanu, A.E.; Arnaud, Y.; Williams, M.W.; Manley, W.F. Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya. Cryosphere 2015, 9, 505–523. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.K.; Shukla, A.; Jasrotia, A.S. Influence of topography on glacier changes in the central Himalaya, India. Glob. Planet. Change. 2017, 155, 196–212. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Shukla, A.; Qadir, J. Differential response of glaciers with varying debris cover extent: Evidence from changing glacier parameters. Int. J. Remote Sens. 2016, 37, 2453–2479. [Google Scholar] [CrossRef]
- Murtaza, K.O.; Romshoo, S.A. Recent Glacier Changes in the Kashmir Alpine Himalayas, India. Geocarto Int. 2017, 32, 188–205. [Google Scholar] [CrossRef]
- Kaushik, S.; Dharpure, J.K.; Joshi, P.K.; Ramanathan, A.; Singh, T. Climate change drives glacier retreat in Bhaga basin located in Himachal Pradesh, India. Geocarto Int. 2019, 1–20. [Google Scholar] [CrossRef]
- Shafiq, M.U.; Islam, Z.U.; Bhat, I.A.; Ahmed, P. Spatio-temporal behaviour of Nehnar Glacier from 1962 to 2017, Jhelum basin, Kashmir Himalayas, India. Phys. Geogr. 2020, 1–20. [Google Scholar] [CrossRef]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol. 2009, 30, 535–548. [Google Scholar] [CrossRef]
- Dar, R.A.; Rashid, I.; Romshoo, S.A.; Marazi, A. Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environ. Monit. Assess. 2014, 186, 2549–2562. [Google Scholar] [CrossRef] [PubMed]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Rashid, I.; Majeed, U. Recent recession and potential future lake formation on Drang Drung glacier, Zanskar Himalaya, as assessed with earth observation data and glacier modelling. Environ. Earth Sci. 2018, 77, 429. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Lohani, A.K.; Saraf, A.K. Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. J. Hydrol. 2018, 564, 376–396. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Azmat, M.; Liaqat, U.W.; Qamar, M.U.; Awan, U.K. Impacts of changing climate and snow cover on the flow regime of Jhelum River, Western Himalayas. Reg. Environ. Chang. 2017, 17, 813–825. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Konz, M.; Shrestha, A.B.; Bierkens, M.F.P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Change 2012, 110, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Dar, R.A.; Rashid, I.; Marazi, A.; Ali, N.; Zaz, S.N. Implications of Shrinking Cryosphere Under Changing Climate on the Streamflows in the Lidder Catchment in the Upper Indus Basin, India. Arctic Antarct. Alp. Res. 2015, 47, 627–644. [Google Scholar] [CrossRef]
- Marazi, A.; Romshoo, S.A. Streamflow response to shrinking glaciers under changing climate in the Lidder Valley, Kashmir Himalayas. J. Mt. Sci. 2018, 15, 1241–1253. [Google Scholar] [CrossRef]
- Meer, M.S.; Mishra, A.K. Remote Sensing Application for Exploring Changes in Land-Use and Land-Cover Over a District in Northern India. J. Indian Soc. Remote Sens. 2020, 48, 525–534. [Google Scholar] [CrossRef]
- Joshi, P.K.; Rashid, H.; Roy, P.S. Landscape dynamics in Hokersar wetland, Jammu & Kashmir—An application of geospatial approach. J. Indian Soc. Remote Sens. 2002, 30, 1–5. [Google Scholar]
- Romshoo, S.A.; Ali, N.; Rashid, I. Geoinformatics for characterizing and understanding the spatio-temporal dynamics (1969 to 2008) of Hokersar wetland in Kashmir Himalayas. Int. J. Phys. Sci. 2011, 6, 1026–1038. [Google Scholar]
- Zaz, S.N.; Romshoo, S.A. Assessing the geoindicators of land degradation in the Kashmir Himalayan region, India. Nat. Hazards 2012, 64, 1219–1245. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Rashid, I. Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arab. J. Geosci. 2014, 7, 143–160. [Google Scholar] [CrossRef]
- Rashid, I.; Romshoo, S.A.; Amin, M.; Khanday, S.A.; Chauhan, P. Linking human-biophysical interactions with the trophic status of Dal Lake, Kashmir Himalaya, India. Limnologica 2017, 62, 84–96. [Google Scholar] [CrossRef]
- Rashid, I.; Aneaus, S. High-resolution earth observation data for assessing the impact of land system changes on wetland health in Kashmir Himalaya, India. Arab. J. Geosci. 2019, 12, 453. [Google Scholar] [CrossRef]
- Dar, S.A.; Bhat, S.U.; Aneaus, S.; Rashid, I. A geospatial approach for limnological characterization of Nigeen Lake, Kashmir Himalaya. Environ. Monit. Assess. 2020, 192, 121. [Google Scholar] [CrossRef]
- Chudley, T.R.; Miles, E.S.; Willis, I.C.; Chudley, T.R.; Miles, E.S.; Glacier, I.C.W.; Miles, E.S.; Willis, I.C. Glacier characteristics and retreat between 1991 and 2014 in the Ladakh Range, Jammu and Kashmir. Remote Sens. Lett. 2017, 8, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Kamp, U.; Byrne, M.; Bolch, T. Glacier fluctuations between 1975 and 2008 in the Greater Himalaya Range of Zanskar, southern Ladakh. J. Mt. Sci. 2011, 8, 374–389. [Google Scholar] [CrossRef]
- Pandey, A.C.; Ghosh, S.; Nathawat, M.S. Evaluating patterns of temporal glacier changes in Greater Himalayan Range, Jammu and Kashmir, India. Geocarto Int. 2011, 26, 321–338. [Google Scholar] [CrossRef]
- Shukla, A.; Garg, S.; Kumar, V.; Mehta, M.; Shukla, U.K. Sensitivity of Glaciers in Part of the Suru Basin, Western Himalaya to Ongoing Climatic Perturbations. In Himalayan Weather and Climate and their Impact on the Environment; Springer International Publishing: New York, NY, USA, 2020; pp. 351–377. [Google Scholar]
- Bolch, T.; Shea, J.M.; Liu, S.; Azam, F.M.; Gao, Y.; Gruber, S.; Immerzeel, W.W.; Kulkarni, A.; Li, H.; Tahir, A.A.; et al. Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. In The Hindu Kush Himalaya Assessment; Springer International Publishing: New York, NY, USA, 2019; pp. 209–255. [Google Scholar]
- Rashid, I.; Romshoo, S.A. Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas. Environ. Monit. Assess. 2013, 185, 4705–4719. [Google Scholar] [CrossRef]
- Rashid, I.; Romshoo, S.A.; Abdullah, T. The recent deglaciation of Kolahoi valley in Kashmir Himalaya, India in response to the changing climate. J. Asian Earth Sci. 2017, 138, 38–50. [Google Scholar] [CrossRef]
- Rashid, I.; Romshoo, S.A.; Muslim, M.; Malik, A.H. Landscape level vegetation characterization of Lidder valley using geoinformatics. J. Himal. Ecol. Sustain. Dev. 2010, 6, 11–24. [Google Scholar]
- Zemp, M.; Roer, I.; Kääb, A.; Hoelzle, M.; Paul, F.; Haeberli, W. WGMS. Global Glacier Changes: Facts and Figures. United Nations Environment Programme, World Glacier Monitoring Service, Zűrich—Zurich Open Repository and Archive. 2008. Available online: https://www.zora.uzh.ch/id/eprint/4173/ (accessed on 28 February 2020).
- Racoviteanu, A.E.; Paul, F.; Raup, B.; Khalsa, S.J.S.; Armstrong, R. Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 global land ice measurements from space (GLIMS) workshop, Boulder, Colorado, USA. In Proceedings of the Annals of Glaciology; Cambridge University Press: Cambridge, UK, 2009; Volume 50, pp. 53–69. [Google Scholar]
- Mir, R.A. Recent changes of two parts of Kolahoi Glacier and its controlling factors in Kashmir basin, western Himalaya. Remote Sens. Appl. Soc. Environ. 2018, 11, 265–281. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Education: New Delhi, India, 2009. [Google Scholar]
- Lee, E.; Kim, S.; Kang, W.; Seo, D.; Paik, J. Contrast enhancement using dominant brightness level analysis and adaptive intensity transformation for remote sensing images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 62–66. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Hall, D.K.; Bayr, K.J.; Schöner, W.; Bindschadler, R.A.; Chien, J.Y.L. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens. Environ. 2003, 86, 566–577. [Google Scholar] [CrossRef]
- Rabatel, A.; Dedieu, J.P.; Vincent, C. Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: Validation on three French glaciers, 1994–2002. J. Glaciol. 2005, 51, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Barandun, M.; Huss, M.; Usubaliev, R.; Azisov, E.; Berthier, E.; Kääb, A.; Bolch, T.; Hoelzle, M. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. Cryosphere 2018, 12, 1899–1919. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M. Exceptionally High 2018 Equilibrium Line Altitude on Taku Glacier, Alaska. Remote Sens. 2019, 11, 2378. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K. Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quat. Int. 2010, 212, 64–69. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, X. Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009). Hydrol. Process. 2013, 27, 3685–3693. [Google Scholar] [CrossRef]
- Mushtaq, F.; Nee Lala, M.G. Assessment of climatic variability in the catchments of Himalayan Lake, Jammu & Kashmir. Geocarto Int. 2017, 32, 1090–1104. [Google Scholar]
- Rashid, I.; Bhat, M.A.; Romshoo, S.A. Assessing changes in the above ground biomass and carbon stocks of Lidder valley, Kashmir. Geocarto Int. 2017, 6049, 1–18. [Google Scholar] [CrossRef]
- Rashid, I.; Romshoo, S.A.; Vijayalakshmi, T. Geospatial modelling approach for identifying disturbance regimes and biodiversity rich areas in North Western Himalayas, India. Biodivers. Conserv. 2013, 22, 2537–2566. [Google Scholar]
- Ahmad, N.; Hashimi, N.H. Glacial history of Kolahoi glacer, Kashmir, India. J. Glaciol. 1974, 13, 279–283. [Google Scholar]
- Shukla, A.; Ali, I. A hierarchical knowledge-based classification for glacier terrain mapping: A case study from Kolahoi Glacier, Kashmir Himalaya. Ann. Glaciol. 2016, 57, 1–10. [Google Scholar]
- Shukla, A.; Ali, I.; Hasan, N.; Romshoo, S.A. Dimensional changes in the Kolahoi glacier from 1857 to 2014. Environ. Monit. Assess. 2016, 189, 5. [Google Scholar] [PubMed]
- Kulkarni, A.V.; Bahuguna, I.M.; Rathore, B.P.; Singh, S.K.; Randhawa, S.S.; Sood, R.K.; Dhar, S. Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Curr. Sci. 2007, 92, 69–74. [Google Scholar]
- Kulkarni, A.V.; Rathore, B.P.; Singh, S.K.; Bahuguna, I.M. Understanding changes in the Himalayan cryosphere using remote sensing techniques. Int. J. Remote Sens. 2011, 32, 601–615. [Google Scholar]
- Brahmbhatt, R.M.; Bahuguna, I.M.; Rathore, B.P.; Kulkarni, A.V.; Shah, R.D.; Rajawat, A.S.; Kargel, J.S. Significance of glacio-morphological factors in glacier retreat: A case study of part of Chenab basin, Himalaya. J. Mt. Sci. 2017, 14, 128–141. [Google Scholar]
- Das, S.; Sharma, M.C. Glacier changes between 1971 and 2016 in the Jankar Chhu Watershed, Lahaul Himalaya, India. J. Glaciol. 2019, 65, 13–28. [Google Scholar]
- Bolch, T. Past and Future Glacier Changes in the Indus River Basin. In Indus River Basin; Elsevier: Amsterdam, The Netherlands, 2019; pp. 85–97. [Google Scholar]
- Pelto, M. How Unusual Was 2015 in the 1984–2015 Period of the North Cascade Glacier Annual Mass Balance? Water 2018, 10, 543. [Google Scholar]
- Hoffman, M.J.; Fountain, A.G.; Liston, G.E. Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J. Geophys. Res. 2008, 113, F04014. [Google Scholar]
- Rashid, I.; Romshoo, S.A.; Chaturvedi, R.K.; Ravindranath, N.H.; Sukumar, R.; Jayaraman, M.; Lakshmi, T.V.; Sharma, J. Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Clim. Change 2015, 132, 601–613. [Google Scholar]
- Zaz, S.N.; Romshoo, S.A.; Krishnamoorthy, R.T.; Viswanadhapalli, Y. Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: Implications for remote influence and extreme events. Atmos. Chem. Phys. 2019, 19, 15–37. [Google Scholar]
- Smith, T.; Bookhagen, B. Changes in seasonal snow water equivalent distribution in high mountain Asia (1987 to 2009). Sci. Adv. 2018, 4, e1701550. [Google Scholar] [PubMed] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar]
- Sarangi, C.; Qian, Y.; Rittger, K.; Bormann, K.J.; Liu, Y.; Wang, H.; Wan, H.; Lin, G.; Painter, T.H. Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: High-resolution WRF-Chem modeling and new satellite observations. Atmos. Chem. Phys. 2019, 19, 7105–7128. [Google Scholar]
- Raj, K.; Govindha, B.; Rao, V.V.; Kumar, K.V.; Diwakar, P.G. Alarming recession of glaciers in Bhilangna basin, Garhwal Himalaya, from 1965 to 2014 analysed from Corona and Cartosat data. Geomat. Nat. Hazards Risk 2017, 8, 1424–1439. [Google Scholar]
- Jain, S.K.; Mir, R.A. Glacier and glacial lake classification for change detection studies using satellite data: A case study from Baspa basin, western Himalaya. Geocarto Int. 2019, 34, 391–414. [Google Scholar]
- Mal, S.; Mehta, M.; Singh, R.B.; Schickhoff, U.; Bisht, M.P.S. Recession and Morphological Changes of the Debris-Covered Milam Glacier in Gori Ganga Valley, Central Himalaya, India, Derived From Satellite Data. Front. Environ. Sci. 2019, 7, 42. [Google Scholar]
- Mushtaq, F.; Lala, M.G.N. Assessment of hydrological response as a function of LULC change and climatic variability in the catchment of the Wular Lake, J&K, using geospatial technique. Environ. Earth Sci. 2017, 76, 1–19. [Google Scholar]
- Shafiq, M.u.; Ahmed, P.; Islam, Z.u.; Joshi, P.K.; Bhat, W.A. Snow cover area change and its relations with climatic variability in Kashmir Himalayas, India. Geocarto Int. 2019, 34, 688–702. [Google Scholar]
- Rather, M.I.; Rashid, I.; Shahi, N.; Murtaza, K.O.; Hassan, K.; Yousuf, A.R.; Romshoo, S.A.; Shah, I.Y. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya. Environ. Monit. Assess. 2016, 188, 185. [Google Scholar] [CrossRef] [PubMed]
- Showqi, I.; Rashid, I.; Romshoo, S.A. Land use land cover dynamics as a function of changing demography and hydrology. GeoJournal 2014, 79, 297–307. [Google Scholar] [CrossRef]
- Mushtaq, F.; Pandey, A.C. Assessment of land use/land cover dynamics vis-à-vis hydrometeorological variability in Wular Lake environs Kashmir Valley, India using multitemporal satellite data. Arab. J. Geosci. 2014, 7, 4707–4715. [Google Scholar] [CrossRef]
- Rasool, R.; Shafiq, M.; Ahmed, P.; Ahmad, P. An analysis of climatic and human induced determinants of agricultural land use changes in Shupiyan area of Jammu and Kashmir state, India. GeoJournal 2018, 83, 49–60. [Google Scholar] [CrossRef]
- Batool, N.; Shah, S.A.; Dar, S.N.; Skinder, S. Rainfall variability and dynamics of cropping pattern in Kashmir Himalayas: A case study of climate change and agriculture. SN Appl. Sci. 2019, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Khursheed, V.; Taufique, M. Spatial analysis of horticulture efficiency and fruit production concentration in Kashmir Valley. GeoJournal 2019, 1–9. [Google Scholar] [CrossRef]
- Lone, S.A.; Mayer, I.A. Geo-spatial analysis of land use/land cover change and its impact on the food security in District Anantnag of Kashmir Valley. GeoJournal 2019, 84, 785–794. [Google Scholar] [CrossRef]
- Hussain, Q.A.; Pandit, A.K. Macroinvertebrates in streams: A review of some ecological factors. Int. J. Fish. Aquac. 2012, 4, 114–123. [Google Scholar]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Lidder | Sind |
---|---|---|
Latitude | 33.73°–34.26° N | 34.12°–34.45° N |
Longitude | 75.08°–75.54° E | 74.60°–75.6° E |
Minimum elevation | 1585 m asl | 1570 m asl |
Mean elevation | 3060 m asl | 3200 m asl |
Maximum elevation | 5300 m asl | 5400 m asl |
Area | ≈1230 km2 | ≈1560 km2 |
Dataset | Path/Row | Acquisition/Release Date | Spatial Resolution |
---|---|---|---|
A. Satellite Data | |||
Landsat Multi-Spectral Scanner (MSS) | 160/36 | 18 September 1980 | 60 m |
Landsat Thematic Mapper (TM) | 149/36 | 7 August 1990 | 30 m |
149/36 | 24 October 1992 | 30 m | |
Linear Imaging Self-Scanning Sensor | 92/46 | 19 October 2005 | 23.5 m |
92/47 | 19 October 2005 | 23.5 m | |
93/46 | 24 October 2005 | 23.5 m | |
Landsat Enhanced Thematic Mapper+ (ETM+) | 149/36 | 27 August 2000 | 30 m |
Landsat 8 Operational Land Imager | 149/36 | 25 October 2013 | 30 m |
148/36 | 29 September 2018 | 30 m | |
High-resolution Basemap imagery | ESRI Arc Map 10.1 | 27 September 2018 | ≈1 m |
B. Topographic data | |||
Survey of India Topographic map | 43N/8 | 1962 | 1:50,000 scale |
Shuttle Radar Topography Mission (SRTM) DEM | N34E075 | 2000 | 30 m |
Advanced Land Observing Satellite ALOS) DEM | N34E075 | 2006–2011 | 30 m |
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM v2 | N34E075 | 2012 | 30 m |
TerraSAR-X add-on for Digital Elevation Measurement (TanDEMx) | N34E075 | 2011–2014 | 30 m |
C. Discharge data | - | 1972–2018 | Point data |
D. Ground Truth data (GPS validation) | - | 2017–2018 | Point data |
E. Interviews | - | 2017–2018 | Point data |
Glacier Area (km2) | |||||
---|---|---|---|---|---|
Year | G1 | G2 | G11 | G111 | Total |
1962 | 8.74 | 4.99 | NA | NA | 13.73 |
1992 | 6.411 | 4.89 | 1.85 | NA | 13.16 |
2000 | 6.211 | 4.76 | 0.69 | 0.72 | 12.38 |
2013 | 5.633 | 4.25 | 0.53 | 0.54 | 10.96 |
2018 | 5.316 | 4.17 | 0.5 | 0.51 | 10.49 |
Gauging Station | S-Score | Z-Statistic | Trend | Theil–Sen Slope |
---|---|---|---|---|
Aru | −191 | −1.80 | Significant (at a < 0.1) | −3.93 |
Batakoot | −91 | −0.85 | Insignificant (at a = 0.1) | −6.19 |
Gur | −291 | −2.75 | Significant (at a < 0.01) | −2.39 |
Kirkadal | −389 | −3.67 | Significant (at a < 0.01) | −4.36 |
Narayanbagh | −92 | −1.48 | Insignificant (at a = 0.1) | −12.66 |
Land Use Type | Area (km2) | ||||||
---|---|---|---|---|---|---|---|
1980 | 1992 | 2005 | 2013 | 2018 | Area Change | % Change | |
Agriculture | 165.65 | 153.9 | 124.66 | 101 | 101 | −64.65 | −39.03 |
Orchard | 21.67 | 41.7 | 53.85 | 58.45 | 60 | 38.33 | 176.88 |
Built-up | 13.19 | 16.54 | 27.56 | 52 | 76 | 62.81 | 476.19 |
Year | Land Use Types | Overall Accuracy | |||
---|---|---|---|---|---|
AG | BU | OR | |||
2018 | n | 24 | 36 | 30 | 90% |
N | 28 | 39 | 33 | ||
ρ | 85.71 | 92.3 | 90.91 | ||
2013 | n | 18 | 17 | 18 | 83.33% |
N | 20 | 20 | 20 | ||
ρ | 90 | 85 | 90 | ||
2005 | n | 17 | 18 | 19 | 90% |
N | 20 | 20 | 20 | ||
ρ | 85 | 90 | 95 | ||
1992 | n | 18 | 18 | 16 | 86.66% |
N | 20 | 20 | 20 | ||
ρ | 90 | 90 | 80 | ||
1980 | n | 16 | 17 | 17 | 83.33% |
N | 20 | 20 | 20 | ||
ρ | 80 | 85 | 85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, I.; Majeed, U.; Aneaus, S.; Pelto, M. Linking the Recent Glacier Retreat and Depleting Streamflow Patterns with Land System Changes in Kashmir Himalaya, India. Water 2020, 12, 1168. https://doi.org/10.3390/w12041168
Rashid I, Majeed U, Aneaus S, Pelto M. Linking the Recent Glacier Retreat and Depleting Streamflow Patterns with Land System Changes in Kashmir Himalaya, India. Water. 2020; 12(4):1168. https://doi.org/10.3390/w12041168
Chicago/Turabian StyleRashid, Irfan, Ulfat Majeed, Sheikh Aneaus, and Mauri Pelto. 2020. "Linking the Recent Glacier Retreat and Depleting Streamflow Patterns with Land System Changes in Kashmir Himalaya, India" Water 12, no. 4: 1168. https://doi.org/10.3390/w12041168
APA StyleRashid, I., Majeed, U., Aneaus, S., & Pelto, M. (2020). Linking the Recent Glacier Retreat and Depleting Streamflow Patterns with Land System Changes in Kashmir Himalaya, India. Water, 12(4), 1168. https://doi.org/10.3390/w12041168