The Recovery of Phosphorus from Acidic Ultra-High Phosphorous Wastewater by the Struvite Crystallization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Analysis
3. Results and Discussion
3.1. Effect of Initial pH
3.2. Effects of Mg/P and N/P Molar Ratios on TP Removal
3.3. Determination of the Optimal Molar Ratio of Mg/N/P
3.4. Effect of Reaction Time on TP Removal
3.5. Comparison of Struvite Methods Using Different Combinations of Agents
3.6. SEM Analysis of Struvite Precipitation
3.7. Analysis of Nutrients in Struvite Precipitation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsuji, N.; Ito, Y.; Saito, Y.; Minamino, Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 2002, 47, 893–899. [Google Scholar] [CrossRef]
- Lin, B.L.; Lu, J.T.; Kong, G. Synergistic corrosion protection for galvanized steel by phosphating and sodium silicate post-sealing. Surf. Coat. Technol. 2008, 202, 1831–1838. [Google Scholar] [CrossRef]
- Akhtar, A.S.; Wong, K.C.; Mitchell, K.A.R. The effect of pH and role of Ni2+ in zinc phosphating of 2024-Al alloy. Part I: Macroscopic studies with XPS and SEM. Appl. Surf. Sci. 2006, 253, 493–501. [Google Scholar] [CrossRef]
- Jin, Y.; Qu, R.; Zuo, Z.; Tang, H. Coating Process for Aluminium Alloy Structure of Bus. Paint Coat. Ind. 2016, 46, 61–64. [Google Scholar]
- Li, Q.; Gu, P.; Ji, X.; Li, H.; Zhang, J.; Zheng, Z. Response of submerged macrophytes and periphyton biofilm to water flow in eutrophic environment: Plant structural, physicochemical and microbial properties. Ecotoxicol. Environ. Saf. 2020, 189, 109990. [Google Scholar] [CrossRef]
- Othman, A.; Dumitrescu, E.; Andreescu, D.; Andreescu, S. Nanoporous Sorbents for the Removal and Recovery of Phosphorus from Eutrophic Waters: Sustainability Challenges and Solutions. ACS Sustain. Chem. Eng. 2018, 6, 12542–12561. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, W.; Fan, Z.; Wang, C.; Meng, Q.; Peng, Y. Effects of polyaluminium chloride addition on community structures of polyphosphate and glycogen accumulating organisms in biological phosphorus removal (BPR) systems. Bioresour. Technol. 2020, 297, 122431. [Google Scholar] [CrossRef]
- Bertanza, G.; Menoni, L.; Capoferri, G.U.; Pedrazzani, R. Promoting biological phosphorus removal in a full scale pre-denitrification wastewater treatment plant. J. Environ. Manag. 2020, 254, 109803. [Google Scholar] [CrossRef]
- Qiang, J.; Zhou, Z.; Wang, K.; Qiu, Z.; Zhi, H.; Yuan, Y.; Zhang, Y.; Jiang, Y.; Zhao, X.; Wang, Z.; et al. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment. Water Res. 2020, 170, 115280. [Google Scholar] [CrossRef] [PubMed]
- Gally, C.R.; Benvenuti, T.; da Trindade, C.D.M.; Rodrigues, M.A.S.; Zoppas-Ferreira, J.; Perez-Herranz, V.; Bernardes, A.M. Electrodialysis for the tertiary treatment of municipal wastewater: Efficiency of ion removal and ageing of ion exchange membranes. J. Environ. Chem. Eng. 2018, 6, 5855–5869. [Google Scholar] [CrossRef]
- Koh, K.Y.; Zhang, S.; Chen, J.P. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance. Chem. Eng. J. 2020, 380, 122153. [Google Scholar] [CrossRef]
- Hu, L.; Yu, J.; Luo, H.; Wang, H.; Xu, P.; Zhang, Y. Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chem. Eng. J. 2020, 382, 123001. [Google Scholar] [CrossRef]
- Pinatha, Y.; Polprasert, C.; Englande, A.J., Jr. Product and cost perspectives of phosphorus recovery from human urine using solid waste ash and sea salt addition—A case of Thailand. Sci. Total Environ. 2020, 713, 136514. [Google Scholar] [CrossRef] [PubMed]
- Sena, M.; Morris, M.R.; Seib, M.; Hicks, A. An exploration of economic valuation of phosphorus in the environment and its implications in decision making for resource recovery. Water Res. 2019, 172, 115449. [Google Scholar] [CrossRef]
- Duan, M.; O’Dwyer, E.; Stuckey, D.C.; Guo, M. Wastewater to Resource: Design of a Sustainable Phosphorus Recovery System. Chemistryopen 2019, 8, 1109–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, K.P.; Pagilla, K.R. Reclaimed phosphorus commodity reserve from water resource recovery facilities-A strategic regional concept towards phosphorus recovery. Resour. Conserv. Recycl. 2019, 150, 104429. [Google Scholar] [CrossRef]
- Xie, M.; Nghiem, L.D.; Price, W.E.; Elimelech, M. Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward Osmosis-Membrane Distillation Process. Environ. Sci. Technol. Lett. 2014, 1, 191–195. [Google Scholar] [CrossRef]
- Shimamura, K.; Ishikawa, H.; Mizuoka, A.; Hirasawa, I. Development of a process for the recovery of phosphorus resource from digested sludge by crystallization technology. Water Sci. Technol. 2008, 57, 451–456. [Google Scholar] [CrossRef]
- Kekedy-Nagy, L.; Teymouri, A.; Herring, A.M.; Greenlee, L.F. Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode. Chem. Eng. J. 2020, 380, 122480. [Google Scholar] [CrossRef]
- Babic-Ivancic, V.; Kontrec, J.; Brecevic, L.; Kralj, D. Kinetics of struvite to newberyite transformation in the precipitation system MgCl2-NH4H2PO4-NaOH-H2O. Water Res. 2006, 40, 3447–3455. [Google Scholar] [CrossRef]
- Fischer, F.; Bastian, C.; Happe, M.; Mabillard, E.; Schmidt, N. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour. Technol. 2011, 102, 5824–5830. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Hagiwara, A.; Kurata, Y.; Ogiso, T.; Futakuchi, M.; Ito, N. Thirteen-week oral toxicity study of magnesium chloride in B6C3F1 mice. Toxicol. Lett. 1994, 73, 25–32. [Google Scholar] [CrossRef]
- Agudosi, E.S.; Salleh, M.A.M.; Abdullah, E.C.; Mubarak, N.M.; Khalid, M.; Azni, A.A. Characterization of crystallized struvite on wastewater treatment equipment: Prospects for crystal fertilizer production. Desalin. Water Treat. 2018, 113, 205–212. [Google Scholar] [CrossRef]
- Wen, G.; Huang, L.; Zhang, X.; Hu, Z. Uptake of nutrients and heavy metals in struvite recovered from a mixed wastewater of human urine and municipal sewage by two vegetables in calcareous soil. Environ. Technol. Innov. 2019, 15, 100384. [Google Scholar] [CrossRef]
- Fan, X.; Rui, Y.; Han, X.; Yang, J.; Wang, Y.; Zhang, Q. Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells. J. Power Sources 2020, 448, 227405. [Google Scholar] [CrossRef]
Items | Units | Parameters |
---|---|---|
pH | 0.6 | |
TP | mg/L | 24,000–25,000 (avg.: 24,500.00) |
Al | mg/L | 4300.00 |
SO4 | mg/L | 50,000–60,000 (avg.: 55,000.00) |
NO3 | mg/L | 302.90 |
Cl | mg/L | 164.50 |
Mo | mg/L | 46.30 |
Ti | mg/L | 42.10 |
Fe | mg/L | 77.60 |
As | µg/L | 17.70 |
Sb | µg/L | 56.90 |
Initial pH | Mg:N:P | TP (mg/L) | pH After Reaction |
---|---|---|---|
4.0 | 1:1:1 | 5.86 | 7.30 |
5.0 | 1:1:1 | 6.10 | 7.80 |
6.0 | 1:1:1 | 5.68 | 8.10 |
Mg:N:P | TP (mg/L) | TP Removal Rate | pH After Reaction | Sludge Yield (g/L) |
---|---|---|---|---|
1.1:1.1:1 | 3.94 | 99.98% | 7.7 | 43.33 |
1.15:1.1:1 | 3.70 | 99.98% | 7.8 | 43.95 |
1.2:1.1:1 | 2.98 | 99.99% | 7.8 | 44.70 |
1.1:1.15:1 | 3.66 | 99.99% | 7.7 | 43.24 |
1.15:1.15:1 | 2.94 | 99.99% | 7.7 | 45.90 |
1.2:1.15:1 | 2.86 | 99.99% | 7.7 | 48.86 |
1.1:1.2:1 | 3.30 | 99.99% | 7.6 | 43.28 |
1.15:1.2:1 | 2.86 | 99.99% | 7.7 | 46.49 |
1.2:1.2:1 | 2.78 | 99.99% | 7.7 | 46.86 |
Parameters | Mg(OH)2 + NH4Cl | MgCl2·6H2O + NH4HCO4 | Mg5(CO3)4(OH)2·4H2O + NH4Cl | |
---|---|---|---|---|
Amount of reagent used (optimal molar ratio in single experiment) | CaO g/L | 38.00 | 38.00 | 38.00 |
NaOH mg/L | 14.60 | 28.10 | 14.60 | |
Mg(OH)2 g/L | 25.87 | / | / | |
NH4Cl g/L | 14.84 | / | 16.30 | |
Mg5(CO3)4(OH)2·4H2O g/L | / | / | 32.20 | |
MgCl2·6H2O g/L | / | 50.85 | / | |
NH4HCO4 g/L | / | 25.69 | / | |
Content of residual ions | TP mg/L | 4.91 | 5.72 | 2.98 |
SO42− mg/L | 5054.00 | 4205.00 | 4415.00 | |
Amount of precipitation | Recycled struvite | 48.60 | 49.80 | 44.70 |
CaO pretreatment | 73.00 | 73.00 | 73.00 | |
Adjust pH | 35.00 | 41.40 | 35.00 | |
pH after reaction | 8.6 | 7.6 | 7.8 |
Ingredient Content | ω(MgO)/% | ω(N)/% | ω(P2O5)/% |
---|---|---|---|
Theoretical value of struvite | 16.43 | 5.70 | 28.92 |
Actual value of precipitate | 17.08 | 4.00 | 25.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, S.; Wang, L.; Zhang, L.; Wan, X.; Sun, Z. The Recovery of Phosphorus from Acidic Ultra-High Phosphorous Wastewater by the Struvite Crystallization. Water 2020, 12, 946. https://doi.org/10.3390/w12040946
Li Q, Wang S, Wang L, Zhang L, Wan X, Sun Z. The Recovery of Phosphorus from Acidic Ultra-High Phosphorous Wastewater by the Struvite Crystallization. Water. 2020; 12(4):946. https://doi.org/10.3390/w12040946
Chicago/Turabian StyleLi, Qiang, Song Wang, Lifang Wang, Li Zhang, Xiaohui Wan, and Zhiguo Sun. 2020. "The Recovery of Phosphorus from Acidic Ultra-High Phosphorous Wastewater by the Struvite Crystallization" Water 12, no. 4: 946. https://doi.org/10.3390/w12040946
APA StyleLi, Q., Wang, S., Wang, L., Zhang, L., Wan, X., & Sun, Z. (2020). The Recovery of Phosphorus from Acidic Ultra-High Phosphorous Wastewater by the Struvite Crystallization. Water, 12(4), 946. https://doi.org/10.3390/w12040946