Changes in Precipitation Extremes over the Source Region of the Yellow River and Its Relationship with Teleconnection Patterns
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Precipitation Extreme Indices
2.2.2. Trend Analysis
2.2.3. Analysis on the Teleconnections
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liang, S.; Ge, S.; Wan, L.; Zhang, J. Can climate change cause the Yellow River to dry up? Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Chen, Y.D.; Tao, X.; Xu, C.-Y.; Chen, X. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrol. Process. 2008, 22, 3829–3843. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, T.; Wortmann, M.; Shi, P.F.; Hattermann, F.; Lobanova, A.; Aich, V. Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones. Clim. Chang. 2017, 141, 483–498. [Google Scholar] [CrossRef]
- Zheng, H.X.; Zhang, L.; Liu, C.M.; Shao, Q.X.; Fukushima, Y. Changes in stream flow regime in headwater catchments of the Yellow River basin since the 1950s. Hydrol. Process. 2007, 21, 886–893. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, E.; Barry, A.A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; do Nascimento, D.J.; Peterson, T.C.; et al. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, P.; Gautam, M.R.; Zhang, Y.; Acharya, K. Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections. J. Geophys. Res. Atmos. 2015, 120, 2676–2688. [Google Scholar] [CrossRef]
- Casanueva, A.; Rodriguez-Puebla, C.; Frias, M.D.; Gonzalez-Reviriego, N. Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2014, 18, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Wang, X.Y.; Yu, Z.B.; Krysanova, V.; Chen, X.; Schwartz, F.W.; Sudicky, E.A. Climate change and probabilistic scenario of streamflow extremes in an alpine region. J. Geophys. Res. Atmos. 2014, 119, 8535–8551. [Google Scholar] [CrossRef]
- Yang, T.; Wang, X.Y.; Zhao, C.Y.; Chen, X.; Yu, Z.B.; Shao, Q.X.; Xu, C.Y.; Xia, J.; Wang, W.G. Changes of climate extremes in a typical arid zone: Observations and multimodel ensemble projections. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Zhou, M.; Deng, H.; Lyu, J.; Cao, W.; Takara, K.; Nover, D.; Geoffrey Schladow, S. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Sci. Total Environ. 2018, 615, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Berndtsson, R.; Uvo, C.B.; Zhang, L.; Jiang, P. Summer precipitation prediction in the source region of the Yellow River using climate indices. Hydrol. Res. 2015, 47, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Hatzaki, M.; Lingis, P.; Flocas, H.A.; Michaelides, S.; Oikonomou, C. The impact of an upper tropospheric teleconnection pattern on precipitation extremes over Cyprus. Adv. Geosci. 2008, 16, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Leathers, D.J.; Yarnal, B.; Palecki, M.A. The pacific North-American teleconnection pattern and United-States climate.1. Regional temperature and precipitation associations. J. Clim. 1991, 4, 517–528. [Google Scholar] [CrossRef]
- Boulanger, J.P.; Leloup, J.; Penalba, O.; Rusticucci, M.; Lafon, F.; Vargas, W. Observed precipitation in the Parana-Plata hydrological basin: Long-term trends, extreme conditions and ENSO teleconnections. Clim. Dyn. 2005, 24, 393–413. [Google Scholar] [CrossRef]
- Back, L.E.; Bretherton, C.S. The relationship between wind speed and precipitation in the Pacific ITCZ. J. Clim. 2005, 18, 4317–4328. [Google Scholar] [CrossRef]
- Kidson, J.W.; Newell, R.E. African rainfall and its relation to the upper air circulation. Quart. J. R. Meteorol. Soc. 1977, 103, 441–456. [Google Scholar] [CrossRef]
- Zhou, W.; Chan, J.C.L. ENSO and the South China Sea summer monsoon onset. Int. J. Climatol. 2007, 27, 157–167. [Google Scholar] [CrossRef]
- Zhang, W.J.; Jin, F.F.; Stuecker, M.F.; Wittenberg, A.T.; Timmermann, A.; Ren, H.L.; Kug, J.S.; Cai, W.J.; Cane, M. Unraveling El Nino’s impact on the East Asian Monsoon and Yangtze River summer flooding. Geophys. Res. Lett. 2016, 43, 11375–11382. [Google Scholar] [CrossRef]
- Yuan, F.F.; Berndtsson, R.; Zhang, L.; Uvo, C.B.; Hao, Z.C.; Wang, X.P.; Yasuda, H. Hydro climatic trend and periodicity for the source region of the yellow river. J. Hydrol. Eng. 2015, 20, 05015003. [Google Scholar] [CrossRef]
- Zheng, H.X.; Zhang, L.; Zhu, R.R.; Liu, C.M.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Tang, Q.H.; Oki, T.; Kanae, S.; Hu, H.P. Hydrological cycles change in the Yellow River basin during the last half of the twentieth century. J. Clim. 2008, 21, 1790–1806. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Prange, M.; Merkel, U. Precipitation and temperature changes in the major Chinese river basins during 1957–2013 and links to sea surface temperature. J. Hydrol. 2016, 536, 208–221. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Jin, Q.; Chen, X.; Xu, C.Y.; Jiang, S.S. On the linkage between the extreme drought and pluvial patterns in China and the large-scale atmospheric circulation. Adv. Meteorol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.F.; Yasuda, H.; Berndtsson, R.; Uvo, C.B.; Zhang, L.N.; Hao, Z.C.; Wang, X.P. Regional sea-surface temperatures explain spatial and temporal variation of summer precipitation in the source region of the Yellow River. Hydrol. Sci. J. 2016, 61, 1383–1394. [Google Scholar] [CrossRef]
- Liu, H.; Duan, K.; Li, M.; Shi, P.; Yang, J.; Zhang, X.; Sun, J. Impact of the North Atlantic Oscillation on the Dipole Oscillation of summer precipitation over the central and eastern Tibetan Plateau. Int. J. Climatol. 2015. [Google Scholar] [CrossRef]
- Rana, A.; Uvo, C.B.; Bengtsson, L.; Sarthi, P.P. Trend analysis for rainfall in Delhi and Mumbai, India. Clim. Dyn. 2012, 38, 45–56. [Google Scholar] [CrossRef]
- Tootle, G.A.; Piechota, T.C. Relationships between Pacific and Atlantic ocean sea surface temperatures and US streamflow variability. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Krichak, S.O.; Breitgand, J.S.; Gualdi, S.; Feldstein, S.B. Teleconnection-extreme precipitation relationships over the Mediterranean region. Theor. Appl. Climatol. 2014, 117, 679–692. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.G.; Fu, X.H. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Zhang, Z.X.; Chen, Y.Q.D.; Liu, C.L.; Lin, H. Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Hellstrom, C. Atmospheric conditions during extreme and non-extreme precipitation events in Sweden. Int. J. Climatol. 2005, 25, 631–648. [Google Scholar] [CrossRef]
- Yang, T.; Shao, Q.X.; Hao, Z.C.; Chen, X.; Zhang, Z.X.; Xu, C.Y.; Sun, L.M. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. J. Hydrol. 2010, 380, 386–405. [Google Scholar] [CrossRef]
- Lan, Y.C.; Zhao, G.H.; Zhang, Y.N.; Wen, J.; Liu, J.Q.; Hu, X.L. Response of runoff in the source region of the Yellow River to climate warming. Quat. Int. 2010, 226, 60–65. [Google Scholar] [CrossRef]
- Hu, Y.; Maskey, S.; Uhlenbrook, S. Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim. Chang. 2012, 110, 403–429. [Google Scholar] [CrossRef] [Green Version]
- Washington, R.; Hodson, A.; Isaksson, E.; MacDonald, O. Northern Hemisphere teleconnection indices and the mass balance of Svalbard glaciers. Int. J. Climatol. 2000, 20, 473–487. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes—Workshop summary. Clim. Chang. 1999, 42, 3–7. [Google Scholar] [CrossRef]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.S.; Chen, Y.R.; Schroeder, T.A. Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Clim. 2010, 23, 4881–4900. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, K. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Harzallah, A.; DeAragao, J.O.R.; Sadourny, R. Interannual rainfall variability in north-east Brazil: Observation and model simulation. Int. J. Climatol. 1996, 16, 861–878. [Google Scholar] [CrossRef]
- Liu, X.D.; Yanai, M. Relationship between the Indian monsoon rainfall and the tropospheric temperature over the Eurasian continent. Quart. J. R. Meteorol. Soc. 2001, 127, 909–937. [Google Scholar] [CrossRef]
- Wallace, J.M.; Smith, C.; Bretherton, C.S. Singular Value Decomposition of Wintertime Sea-Surface Temperature and 500-Mb Height Anomalies. J. Clim. 1992, 5, 561–576. [Google Scholar] [CrossRef]
- Uvo, C.B.; Repelli, C.A.; Zebiak, S.E.; Kushnir, Y. The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J. Clim. 1998, 11, 551–562. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Smith, C.; Wallace, J.M. An Intercomparison of methods for finding coupled patterns in climate data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.B.; Yu, J.J.; Yu, X.B.; Ouyang, R.L.; Zhang, Y.C.; Wang, P.; Liu, W.B.; Min, L.L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, T.X. Characteristics and changes of extreme precipitation in the yellow-huaihe and yangtze-huaihe rivers basins, China. J. Clim. 2011, 24, 3781–3795. [Google Scholar] [CrossRef]
- Wang, W.G.; Shao, Q.X.; Yang, T.; Peng, S.Z.; Yu, Z.B.; Taylor, J.; Xing, W.Q.; Zhao, C.P.; Sun, F.C. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 401–421. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.L.; Liu, W.Z.; Flanagan, D.C. Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961–2007. Quat. Int. 2010, 226, 92–100. [Google Scholar] [CrossRef]
- Bueh, C.; Nakamura, H. Scandinavian pattern and its climatic impact. Quart. J. R. Meteorol. Soc. 2007, 133, 2117–2131. [Google Scholar] [CrossRef]
- Zhang, J. Low temperature in the northeastern China and heavy snowstorm over Inner Mongolia and Xinjiang. Mon. Meteorol. 2001, 27, 62–63. (In Chinese) [Google Scholar]
- Liu, Y.Y.; Wang, L.; Zhou, W.; Chen, W. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Clim. Dyn. 2014, 42, 2817–2839. [Google Scholar] [CrossRef]
- Fan, L.; Shin, S.-I.; Liu, Q.; Liu, Z. Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett. 2013, 40, 2471–2477. [Google Scholar] [CrossRef]
- Huang, R.; Chen, W.; Yang, B.; Zhang, R. Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv. Atmos. Sci. 2004, 21, 407–424. [Google Scholar]
- Feng, J.; Chen, W.; Tam, C.Y.; Zhou, W. Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol. 2011, 31, 2091–2101. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.; Zha, X.; Su, H.; Jia, Y.; Zhu, Y. Impact of monsoonal Clim. Chang. on Holocene overbank flooding along Sushui River, middle reach of the Yellow River, China. Quat. Sci. Rev. 2007, 26, 2247–2264. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Cui, B. Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar] [CrossRef]
- Tedeschi, R.G.; Cavalcanti, I.F.A.; Grimm, A.M. Influences of two types of ENSO on South American precipitation. Int. J. Climatol. 2013, 33, 1382–1400. [Google Scholar] [CrossRef]
- Cai, W.; Van Rensch, P.; Cowan, T.; Sullivan, A. Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Clim. 2010, 23, 4944–4955. [Google Scholar] [CrossRef]
- Black, E.; Slingo, J.; Sperber, K.R. An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Weather Rev. 2003, 131, 74–94. [Google Scholar] [CrossRef]
- Chang, C.; Harr, P.; Ju, J. Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall–ENSO relationship. J. Clim. 2001, 14, 2376–2380. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Li, T.; Wen, M.; Liu, L. Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Clim. Dyn. 2014, 45, 559–567. [Google Scholar] [CrossRef]
- Onyutha, C.; Willems, P. Spatial and temporal variability of rainfall in the Nile Basin. Hydrol. Earth Syst. Sci. 2015, 19, 2227–2246. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.G.; Hu, Z.Z.; Kirtman, B.P. Evolution of ENSO-related rainfall anomalies in East Asia. J. Clim. 2003, 16, 3742–3758. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Achuthavarier, D.; Krishnamurthy, V.; Kirtman, B.P.; Huang, B. Role of the Indian ocean in the ENSO–Indian summer monsoon teleconnection in the NCEP climate forecast system. J. Clim. 2012, 25, 2490–2508. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. 2001, 28, 4499–4502. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Hu, Q. Variations in the teleconnection of ENSO and summer rainfall in northern China: A role of the Indian summer monsoon. J. Clim. 2004, 17, 4871–4881. [Google Scholar] [CrossRef]
Category | Index | Description | Unit |
---|---|---|---|
Precipitation percentile | R95p | Annual total precipitation when RR > 95th percentile | mm |
Precipitation intensity | R10mm | Annual number of days with RR ≥ 10 mm | days |
R5d | Annual maximum consecutive 5-day precipitation | mm | |
SDII | Total precipitation divided by the number of wet days | mm/day | |
Precipitation persistence | CDD | Maximum number of consecutive dry days | days |
CWD | Maximum number of consecutive wet days | days |
Station/Indices | R95p (mm/decade) | R10mm (days/decade) | R5d (mm/decade) | SDII (mm/decade) | CDD (days/decade) | CWD (days/decade) |
---|---|---|---|---|---|---|
Hongyuan | −2.33 | 0.38 | 0.49 | 0.08 | −1.16 | −0.54 |
Ruoergai | 1.44 | −0.35 | 1.21 | −0.01 | −0.92 | −0.40 |
Maqu | 4.65 | 0.33 | 1.39 | 0.03 | −2.50 | −0.12 |
Jiuzhi | −7.34 | −0.53 | −3.36 | −0.15 | −2.92 | −0.09 |
Henan | −3.48 | −0.33 | −1.98 | −0.05 | −2.41 | −0.37 |
Dari | 3.60 | −0.02 | 0.88 | 0.03 | −1.20 | −0.07 |
Maduo | −0.09 | 0.12 | −0.25 | 0.02 | −5.64 | −0.25 |
Xinghai | 2.88 | 0.29 | 0.12 | 0.12 | −2.48 | −0.23 |
Zeku | −6.58 | −1.80 | −6.25 | −0.21 | −8.02 | −0.25 |
Tongde | −5.65 | −0.64 | −2.29 | −0.10 | 5.50 | −0.20 |
Whole Region | 0.85 | 0.09 | 0.15 | 0.02 | −2.31 | −0.20 |
Mode | R95p | R10mm | R5d | SDII | CDD | CWD | NAO | EA | WP | PNA | EA/WR | SCA | POL | PDO | NINO 3.4 | IOD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode 1 | 0.36 | 0.37 | 0.31 | 0.32 | −0.11 | 0.26 | 0.04 | −0.03 | −0.20 | −0.04 | −0.15 | −0.06 | 0.04 | −0.16 | −0.36 | −0.09 |
Mode 2 | −0.09 | 0.10 | −0.18 | −0.11 | −0.36 | 0.19 | 0.21 | 0.03 | −0.13 | 0.12 | 0.09 | −0.41 | 0.04 | 0.13 | 0.08 | −0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, F.; Liu, J.; Berndtsson, R.; Hao, Z.; Cao, Q.; Wang, H.; Du, Y.; An, D. Changes in Precipitation Extremes over the Source Region of the Yellow River and Its Relationship with Teleconnection Patterns. Water 2020, 12, 978. https://doi.org/10.3390/w12040978
Yuan F, Liu J, Berndtsson R, Hao Z, Cao Q, Wang H, Du Y, An D. Changes in Precipitation Extremes over the Source Region of the Yellow River and Its Relationship with Teleconnection Patterns. Water. 2020; 12(4):978. https://doi.org/10.3390/w12040978
Chicago/Turabian StyleYuan, Feifei, Jiahong Liu, Ronny Berndtsson, Zhenchun Hao, Qing Cao, Huimin Wang, Yiheng Du, and Dong An. 2020. "Changes in Precipitation Extremes over the Source Region of the Yellow River and Its Relationship with Teleconnection Patterns" Water 12, no. 4: 978. https://doi.org/10.3390/w12040978
APA StyleYuan, F., Liu, J., Berndtsson, R., Hao, Z., Cao, Q., Wang, H., Du, Y., & An, D. (2020). Changes in Precipitation Extremes over the Source Region of the Yellow River and Its Relationship with Teleconnection Patterns. Water, 12(4), 978. https://doi.org/10.3390/w12040978