Laser Diffraction as An Innovative Alternative to Standard Pipette Method for Determination of Soil Texture Classes in Central Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Analysis by Pipette Method
2.3. Soil Analysis by Laser Diffraction Method
2.4. Statistical Analyses
3. Results
3.1. Distribution of the Soil Texture Classes in the Study Area
3.2. Developing the Relationships between the Results of PM and LD
- Y—dependent variable.
- b2—coefficient 2.
- X2—independent variable 2.
- b1—coefficient 1.
- X1—independent variable 1.
- b0—constant.
3.3. Verification of the Relationship between PM and LD
3.4. Aproximation of LD Results to PM
4. Discussion
4.1. Comparison of Results by PM and LD Analysis
4.2. Comparison of Results by Two LD Devices
4.3. Comparison of PM and LD Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bieganowski, A.; Ryżak, M.; Sochan, A.; Makó, A.; Barna, G.; Hernádi, H.; Beczek, M.; Polakowski, C. Laser diffractometry in the measurements of soil and sediment particle size distribution. Adv. Agron. 2018, 151, 215–279. [Google Scholar]
- Makó, A.; Szabó, B.; Rajkai, K.; Szabó, J.; Bakacsi, Z.; Labancz, V.; Hernádi, H.; Barna, G. Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. Int. Agrophys. 2019, 33, 445–454. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Wendroth, O.; Liu, B.; Cheng, C.; Huang, T.; Shi, Y. Is the laser diffraction method reliable for soil particle size distribution analysis? Soil Sci. Soc. Am. J. 2019, 83, 276–287. [Google Scholar] [CrossRef]
- Fulajtár, E. Fyzikálne Vlastnosti Pôdy [Physical Properties of Soil], 1st ed.; VÚPOP: Bratislava, Slovakia, 2006. (In Slovak) [Google Scholar]
- Igaz, D.; Aydin, E.; Horák, J.; Čimo, J.; Tárník, A.; Bárek, V. Základné Merania v Hydropedológii [Basic Measurements in Hydropedology], 1st ed.; Slovak University of Agriculture: Nitra, Slovakia, 2017. (In Slovak) [Google Scholar]
- Šimanský, V.; Polláková, N.; Chlpík, J.; Kolenčík, M. Pôdoznalectvo [Soil Science], 1st ed.; Slovak University of Agriculture: Nitra, Slovakia, 2018. (In Slovak) [Google Scholar]
- Fotyma, M.; Igras, J.; Tkaczyk, P.; Pikuła, D. Soil testing methods and fertilizer recommendations in Central–Eastern European countries. Monography. Fertil. Fertil. 2008, 30, 1–110. Available online: http://nawfert.iung.pulawy.pl/zeszyty/pelne/30%202008.pdf (accessed on 14 April 2020).
- Bárek, V.; Halaj, P.; Igaz, D. The influence of climate change on water demands for irrigation of special plants and vegetables in Slovakia. In Bioclimatology and Natural Hazards; Springer: Dordrecht, The Netherlands, 2009; pp. 271–282. [Google Scholar]
- Tárník, A.; Igaz, D. Quantification of soil water storage available to plants in the Nitra river basin. Acta Sci. Pol. 2015, 14, 209–216. [Google Scholar] [CrossRef]
- Mikloš, M.; Igaz, D.; Šinka, K.; Škvareninová, J.; Jančo, M.; Vyskot, I.; Škvarenina, J. Ski piste snow ablation versus potential infiltration (Veporic Unit, Western Carpathians). J. Hydrol. Hydromech. 2020, 68, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; SSSA: Madison, WI, USA, 1986; pp. 383–409. [Google Scholar]
- Muggler, C.C.; Pape, T.; Buurman, P. Laser grain-size determination in soil genetic studies 2. Clay content, clay formation, and aggregation in some Brazilian oxisols. Soil Sci. 1997, 162, 219–228. [Google Scholar] [CrossRef]
- Lal, R.; Shukla, M.K. Principles of Soil Physics; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Hrivňáková, K.; Makovníková, J.; Barančíková, G.; Bezák, P.; Bezáková, Z.; Dodok, R.; Grečo, V.; Chlpík, J. Jednotné Pracovné Postupy Rozborov Pôd [Uniform Working Procedures for Soil Analyzes]; VUPOP: Bratislava, Slovakia, 2011. (In Slovak) [Google Scholar]
- Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual; Soil Survey Investigations Report No. 51, Version 2.0; Burt, R., Soil Survey Staff, Eds.; U.S. Department of Agriculture, Natural Resources Conservation Service: Lincoln, NE, USA, 2014. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1244466.pdf (accessed on 2 February 2020).
- Allen, T.A. Particle Size Measurement, 4th ed.; Chapman and Hall: London, UK, 1990. [Google Scholar]
- Vendelboe, A.L.; Moldrup, P.; Schjønning, P.; Oyedele, D.J.; Jin, Y.; Scow, K.M.; De Jonge, L.W. Colloid release from soil aggregates: Application of laser diffraction. Vadose Zone J. 2012, 11, 1539–1663. [Google Scholar] [CrossRef]
- Zumr, D.; Mützenberg, D.V.; Neumann, M.; Jeřábek, J.; Laburda, T.; Kavka, P.; Johannsen, L.L.; Zambon, N.; Klik, A.; Strauss, P.; et al. Experimental setup for splash erosion monitoring—Study of silty loam splash characteristics. Sustainability 2020, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Kondrlová, E.; Igaz, D.; Horák, J. Principles of soil particle size analysis by indirect optical method: Advantages and disadvantages of laser diffraction analysis. Mater. Methods Technol. 2013, 7, 492–501. [Google Scholar]
- Goossens, D.; Buck, B. Dust emission by off-road driving: Experiments on 17 arid soil types Nevada, USA. Geomorphology 2009, 107, 118–138. [Google Scholar] [CrossRef]
- Stanley, K.E.; Schaetzl, R.J. Characteristics and paleoenvironmental significance of a thin, dual-sourced loess sheet, north-central Wisconsin. Aeolian Res. 2011, 2, 241–251. [Google Scholar] [CrossRef]
- ISO 13320:2009 (BS ISO 13320:2009). Particle Size Analysis-Laser Diffraction Methods; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Vandecasteele, B.; De Vos, B. Relationship between soil textural fractions determined by the sieve-pipette method and laser diffractometry. IBW Bb R 2003, 1–19. Available online: https://www.researchgate.net/publication/273948901_Relationship_between_soil_textural_fractions_determined_by_the_sieve-pipette_method_and_laser_diffractometry (accessed on 14 April 2020).
- Šinkovičová, M.; Igaz, D.; Čimo, J.; Halaj, P. Preparation methodology of soil samples for laser diffraction. Mater. Methods Technol. 2016, 10, 191–197. [Google Scholar]
- Šinkovičová, M.; Igaz, D.; Kondrlová, E.; Jarošová, M. Soil particle size analysis by laser diffractometry: Result comparison with pipette method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072025. [Google Scholar] [CrossRef]
- Kondrlová, E.; Igaz, D.; Grešová, L.; Horák, J. Porovnanie spôsobov prípravy pôdnych vzoriek a metód merania distribúcie zrnitostných frakcií pôd v povodí rieky Nitra [Comparison of methods of soil samples preparation and methods of measurement of grain size fractions of distribution in Nitra River basin]. Acta Hortic. Regiotect. 2012, 15, 27–30. (In Slovak) [Google Scholar]
- Kondrlová, E.; Igaz, D.; Horák, J.; Čimo, J. Comparison of sample preparation methods for laser diffraction to determine the particle size distribution of medium fine soils. In Proceedings of the Land Degradation and Challenges in Sustainable Soil Management: 8th International Soil Science Congress, Izmir, Turkey, 15–17 May 2012; pp. 432–437. [Google Scholar]
- Kun, Á.; Katona, O.; Sipos, G.; Barta, K. Comparison of pipette and laser diffraction methods in determining the granulometric content of fluvial sediment samples. J. Environ. Geogr. 2013, 6, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, Q.; Li, X.; Jia, X.; Wei, X.; Shao, M. Determination of soil texture by laser diffraction method. Soil Phys. Hydrol. Soil Sci. Soc. Am. J. 2015, 79, 1556–1566. [Google Scholar] [CrossRef] [Green Version]
- Taubner, H.; Roth, B.; Tippkötter, R. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J. Plant Nutr. Soil Sci. 2009, 172, 161–171. [Google Scholar] [CrossRef]
- Mihalache, D.; Ilie, L.; Marin, D.I.; Calciu, I. The new methods for measuring soil texture. In Seria Agricultură-Montanologie-Cadastru; Analele Universităţii: Craiova, Romania, 2010; Volume 40, pp. 486–490. [Google Scholar]
- Jena, R.; Jagadeeswaran, R.; Sivasamy, R. Analogy of soil parameters in particle size analysis through laser diffraction techniques. Indian J. Hill Farm. 2013, 26, 78–83. [Google Scholar]
- Kondrlová, E.; Igaz, D.; Horák, J. Effect of calculation models on particle size distribution estimated by laser diffraction. J. Ege Univ. Fac. Agric. 2015, 52, 21–27. [Google Scholar]
- FRITSCH. Laser Equipment for Particle Analyzer 2016. Available online: http://www.ilabo.cz/UserFiles/File/eshop/672/d_ANALYSETTE%2022%20CZ.pdf (accessed on 1 February 2020).
- Kerry, R.; Rawlins, B.G.; Oliver, M.A.; Lacinska, A.M. Problems with determining the particle size distribution of chalk soil and some of their implications. Geoderma 2009, 152, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, C.; Ferro, V.; Mirabile, S. Testing the grain-size distribution determined by laser diffractometry for sicilian soils. J. Agric. Eng. 2011, 42, 39–46. [Google Scholar] [CrossRef]
- Kowalenko, C.G.; Babuin, D. Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples. Geoderma 2013, 193–194, 22–28. [Google Scholar] [CrossRef]
- Eshel, G.; Levy, G.J.; Mingelgrin, U.; Singer, M.J. Critical evaluation of the use of laser diffraction method for particle-size distribution analysis. Soil Sci. Am. J. 2004, 68, 736–743. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; Natural Resources Conservation Service: Washington, DC, USA, 2010. [Google Scholar]
- Bedrna, Z.; Ofránus, T. Aplikácia novej klasifikácie textúry v geografii pôd Slovenska. [Application of new soil texture classification in geography of Slovakia]. Geogr. J. 2013, 65, 161–169. (In Slovak) [Google Scholar]
- Balkovič, J.; Bedrna, Z.; Bublinec, E.; Čurlík, J.; Dlapa, P.; Fulajtár, E.; Gregor, J. Morfogenetický Klasifikačný Systém Pôd Slovenska. Bazálna Referenčná Taxonómia [Morphogenetic Soil Classification System of Slovakia], 2nd ed.; NPPC VÚPOP: Bratislava, Slovakia, 2014. (In Slovak) [Google Scholar]
- Gleboznawcze, P.T. Particle size distribution and textural classes of soils and mineral materials - classification of Polish Society of Soil Science 2008. Pol. Soil Sci. Annu. 2009, 60, 5–16. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Hristov, B. The importance of soil texture in soil classification systems. J. Balk. Ecol. 2013, 16, 137–139. [Google Scholar]
- Deng, J.; Ma, C.; Yu, H. Different soil particle-size classification systems for calculating volume fractal dimension—A case study of Pinus sylvestris var. Mongolica in Mu Us Sandy Land, China. Appl. Sci. 2018, 8, 1872. [Google Scholar] [CrossRef] [Green Version]
- Ilavská, B. Využitie údajov VUPOP pri pozemkových úpravách. [Use of SSCRI Data for Land Consolidation]. In Workshop of Land Consolidation; SZG: Bratislava, Slovakia, 2001. (In Slovak) [Google Scholar]
- Petrovič, F.; Stranovsky, P.; Muchová, Z.; Falťan, V.; Skokanová, H.; Havlíček, M.; Gábor, M.; Spulerová, J. Landscape-ecological optimization of hydric potential in foothills region with dispersed settlements—A case study of Nová Bošáca, Slovakia. Appl. Ecol. Environ. Res. 2017, 15, 379–400. Available online: http://www.aloki.hu/pdf/1501_379400.pdf (accessed on 20 February 2020). [CrossRef]
- Súľovský, M.; Falťan, V.; Skokanová, H.; Havlíček, M.; Petrovič, F. Spatial analysis of long-term land-use development in regard to physiotopes: Case studies from the Carpathians. Phys. Geogr. 2017, 38, 470–488. [Google Scholar] [CrossRef]
- VÚMOP. Research Institute for Soil and Water Conservation, Praha: An Overview of Performance and Results Obtained in 1993 with a Short Account of History; Výzkumný Ústav Meliorací a Ochrany Půdy: Praha, Czech Republic, 1994. [Google Scholar]
- Šimanský, V.; Polláková, N.; Chlpík, J.; Kolenčík, M. Návody na Cvičenia z Pôdoznalectva [Guidelines for Soil Science Practicals]; Slovenská Poľnohospodárska Univerzita v Nitre: Nitra, Slovakia, 2017. (In Slovak) [Google Scholar]
- Skalová, J.; Kotorová, D.; Igaz, D.; Gomboš, M.; Nováková, K. Regionalizácia Pedotransferových Funkcií Vlhkostných Retenčných Kriviek Pôdy [Regionalization of Pedotransfer Functions of Soil Moisture Retention Curves]; STU: Bratislava, Slovakia, 2015. (In Slovak) [Google Scholar]
- Hydrophysics Web Server. 2020. Available online: http://fzki.uniag.sk/hydrophysics/ (accessed on 10 February 2020).
- Dumbrovský, M.; Larišová, L.; Sobotková, V.; Kulihová, M. Comparison of different texture analysis for soil erodibility calculations of loamy and sandy-loam soils in Moravian regions. Acta Univ. Agric. Silvic. Mendel. Brun. 2019, 67, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture. Comparison of regression tree and Random Forest models. Geoderma 2012, 170, 70–79. [Google Scholar] [CrossRef]
- Varga, G.; Gresina, F.; Újvári, G.; Kovács, J.; Szalai, Z. On the reliability and comparability of laser diffraction grain size measurements of paleosols in loess records. Sediment. Geol. 2019, 389, 42–53. [Google Scholar] [CrossRef]
- Orzechowski, M.; Smólczyński, S.; Długosz, J.; Poźniak, P. Measurements of texture of soils formed from glaciolimnic sediments by areometric method, pipette method and laser diffraction method. Sci. Annu. 2014, 65, 72–79. [Google Scholar] [CrossRef]
- Miller, B.A.; Schaetzl, R.J. Precision of soil particle analysis using laser diffractometry. Soil Sci. Am. J. 2011, 76, 1719–1727. [Google Scholar] [CrossRef] [Green Version]
- Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 1997, 44, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Beuselinck, L.; Govers, G.; Poesen, J.; Degraer, G.; Froyen, L. Grain-size analysis by laser diffractometry: Comparison with the sieve-pipette method. Catena 1998, 32, 193–208. [Google Scholar] [CrossRef]
- Sochan, A.; Bieganowski, A.; Ryżak, M.; Dobrowolski, R.; Bartmiñski, P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 2012, 26, 99–102. [Google Scholar] [CrossRef]
Particles with Diameter ˂0.01 mm (% Mass) | Soil Texture Class | General Soil Texture Class |
---|---|---|
<10 | Sandy soil | Light soils |
10–20 | Loam-sandy soil | |
20–30 | Sand-loamy soil | Medium heavy soils |
30–45 | Loamy soil | |
45–60 | Clay-loamy soil | Heavy soils |
60–75 | Clay soil | |
>75 | Clay |
Trend | Determination Coefficient R2 (%) | Statistical Significance F | Constant (p-Value for Intercept) | Regression Coefficient (p-Value for X Variables) | |
---|---|---|---|---|---|
Analysette22 (LD_22) | Linear | 72.69 | 0 | 0 | 0 |
Exponential | 70.34 | 0 | 0 | 0 | |
Polynomial | 76.64 | 0 | 0 | b1 = 0.0342; b2 = 0 | |
Mastersizer2000 (LD_2000) | Linear | 81.34 | 0 | 0 | 0 |
Exponential | 75.87 | 0 | 0 | 0 | |
Polynomial | 84.67 | 0 | 0 | b1 = 0.0218; b2 = 0 |
Fractions | <0.001 mm | <0.01 mm | <0.05 mm | <0.25 mm | <2 mm | |
---|---|---|---|---|---|---|
Analysette22 (LD_22) | PMestLM 1–PMme 2 | −0.75 ± 0.59 | 14.99 ± 0.86 | 11.23 ± 0.93 | −3.80 ± 0.84 | −15.11 ± 0.02 |
PMestEM 3–PMme | −1.05 ± 0.58 | 2.31 ± 0.82 | 8.56 ± 1.02 | −3.08 ± 0.88 | −14.00 ± 0.04 | |
PMestPM 4–PMme | 5.18 ± 0.58 | 3.28 ± 0.82 | 10.87 ± 1.02 | −0.98 ± 0.88 | −11.91 ± 0.04 | |
Mastersizer2000 (LD_2000) | PMestLM–PMme | −4.28 ± 0.58 | 11.43 ± 0.84 | 8.29 ± 0.80 | −1.06 ± 0.72 | −10.89 ± 0.00 |
PMestEM–PMme | −1.92 ± 0.58 | −0.79 ± 0.80 | 2.25 ± 0.90 | 0.95 ± 0.85 | −6.16 ± 0.00 | |
PMestPM–PMme | 1.94 ± 0.58 | 2.24 ± 0.80 | 5.10 ± 0.88 | 1.36 ± 0.81 | −6.61 ± 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igaz, D.; Aydin, E.; Šinkovičová, M.; Šimanský, V.; Tall, A.; Horák, J. Laser Diffraction as An Innovative Alternative to Standard Pipette Method for Determination of Soil Texture Classes in Central Europe. Water 2020, 12, 1232. https://doi.org/10.3390/w12051232
Igaz D, Aydin E, Šinkovičová M, Šimanský V, Tall A, Horák J. Laser Diffraction as An Innovative Alternative to Standard Pipette Method for Determination of Soil Texture Classes in Central Europe. Water. 2020; 12(5):1232. https://doi.org/10.3390/w12051232
Chicago/Turabian StyleIgaz, Dušan, Elena Aydin, Miroslava Šinkovičová, Vladimír Šimanský, Andrej Tall, and Ján Horák. 2020. "Laser Diffraction as An Innovative Alternative to Standard Pipette Method for Determination of Soil Texture Classes in Central Europe" Water 12, no. 5: 1232. https://doi.org/10.3390/w12051232
APA StyleIgaz, D., Aydin, E., Šinkovičová, M., Šimanský, V., Tall, A., & Horák, J. (2020). Laser Diffraction as An Innovative Alternative to Standard Pipette Method for Determination of Soil Texture Classes in Central Europe. Water, 12(5), 1232. https://doi.org/10.3390/w12051232