Response of LUCC on Runoff Generation Process in Middle Yellow River Basin: The Gushanchuan Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Analysis of Meteo-Hydrological Changes
2.3.2. Estimating the Impact of Climate Variability and Human Activities on Runoff
2.3.3. Runoff Generation Pattern
2.3.4. Antecedent Precipitation Index
2.3.5. Watershed Water Storage Capacity
3. Results and Discussion
3.1. Analysis of Meteo-Hydrologic Changes
3.2. Characteristics of LUCC (Land Use and Cover Changes)
3.3. Correlation of Rainfall-Runoff
3.4. Diagnostic Analysis of the Runoff Generation Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the loess plateau of china. J. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Zhang, B.; He, C.; Burnham, M.; Zhang, L. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the loess plateau in china. J. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhou, J.; Tian, J.; He, X.; Tang, K. Decoupling soil erosion and human activities on the Chinese loess plateau in the 20th century. J. Catena 2006, 68, 10–15. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z. Revegetation in china’s loess plateau is approaching sustainable water resource limits. J. Nat. Clim. Chang. 2016, 6, 1019. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, B.; Gao, G.; Lü, Y.; Liu, Y.; Lü, N.; Wang, S. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the loess plateau, china. J. Catena 2016, 137, 1–11. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, X.; Shao, H.; Gao, P.; Wang, F.; Jiao, J.; Zhu, J. Dynamic changes of sediment discharge and the influencing factors in the yellow river, china, for the recent 90 years. J. Clean-Soil Air Water 2012, 40, 303–309. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the yellow river due to anthropogenic changes. J. Nat. Geosci. 2015, 9, 38. [Google Scholar] [CrossRef]
- Feng, X.; Sun, G.; Fu, B.; Su, C.; Liu, Y.; Lamparski, H. Regional effects of vegetation restoration on water yield across the loess plateau, china. J. Hydrol. Earth Syst. Sci. Discuss. 2012, 16, 2617–2628. [Google Scholar] [CrossRef] [Green Version]
- Pasquino, V.; Gualtieri, P.; Doria, G. On evaluating flow resistance of rigid vegetation using classic hydraulic roughness at high submergence levels: An experimental work. In Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces; GeoPlanet: Earth and Planetary Sciences; Rowiński, P., Marion, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 269–277. [Google Scholar]
- Aberle, J.; Järvelä, J. Flow resistance of emergent rigid and flexible floodplain vegetation. J. Hydraul. Res. 2013, 51, 33–45. [Google Scholar] [CrossRef]
- Shi, C.; Zhou, Y.; Fan, X.; Shao, W. A study on the annual runoff change and its relationship with water and soil conservation practices and climate change in the middle yellow river basin. J. Catena 2013, 100, 31–41. [Google Scholar] [CrossRef]
- Horton, R. The role of infiltration in the hydrologic cycle. J. Eos Trans. Am. Geophys. Union 1933, 14, 446. [Google Scholar] [CrossRef]
- Hewlett, J.; Hibbert, A. Moisture and energy conditions within a sloping soil mass during drainage. J. Geophys. Res. 1963, 68, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Dunne, T.; Black, R. Partial area contributions to storm runoff in a small new England watershed. J. Water Resour. Res. 1970, 6, 1296–1311. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Tian, F.; Hu, H.; Hu, H. The role of run-on for overland flow and the characteristics of runoff generation in the loess plateau, china. Hydrol. Sci. J. 2012, 57, 1107–1117. [Google Scholar] [CrossRef]
- Hydrological Yearbook of People’s Republic of China-Hydrological Data of Yellow River Basin; Hydrological Bureau of the Ministry of Water Resources of the People’s Republic of China: Zhengzhou, China, 2013; pp. 1965–2010.
- Mann, H.B. Nonparametric tests against trend. J. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Budyko, M.I.; David, H. Climate and life; Academic Press: New York, NY, USA, 1974; Volume 508, pp. 23–24. [Google Scholar]
- Pike, J. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Fu, B. On the calculation of the evaporation from land surface. Chin. J. Atmosph. Sci. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Dunne, T.; Richard, D. An experimental investigation of runoff production in permeable soils. J. Water Resour. Res. 1970, 6, 478–490. [Google Scholar] [CrossRef]
- Rui, X.; Gong, X.; Zhang, C. Formation and calculation of watershed runoff yield. J. Hydroelectr. Eng. 2009, 28, 146–156. [Google Scholar]
- Barthold, F.; Woods, R. Stormflow generation: A meta-analysis of field evidence from small, forested catchments. J. Water Resour. Res. 2015, 51, 3730–3753. [Google Scholar] [CrossRef]
- Kohler, M.A.; Linsley, R.K. Predicting the Runoff from Storm Rainfall; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1951; p. 34.
- Hu, C.; Li, S.; Zhang, W.; Chen, X.; Wang, J. Establishing and Testing Runoff Model Based on Runoff Coefficient. J. China Hydrol. 2016, 36, 8–13. [Google Scholar]
- Pasquino, V.; Saulino, L.; Pelosi, A.; Allevato, E.; Rita, A.; Todaro, L.; Saracino, A.; Chirico, G. Hydrodynamic behaviour of European black poplar (Populus nigra L.) under coppice management along Mediterranean river ecosystems. J. River Res. Appl. 2018, 34, 586–594. [Google Scholar] [CrossRef]
- Zhan, C.; Jiang, S.; Sun, F. Quantitative contribution of climate change and human activities to runoff changes in the Wei River basin, China. Hydrol. Earth Syst. Sci. 2014, 18, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yan, Y.; Yan, M.; Zhao, X. Quantitative estimation of the impact of precipitation and human activities on runoff change of the Huangfuchuan River Basin. J. Geogr. Sci. 2012, 22, 906–918. [Google Scholar] [CrossRef]
- Liu, X. The Cause of the Sharp Decline of Water and Sediment in the Yellow River in Recent Years; Science Press of China: Beijing, China, 2016; pp. 45–69. [Google Scholar]
- Meerkerk, A.; Wesemael, B.; Bellin, N. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. J. Hydrol. Process. 2009, 23, 2792–2803. [Google Scholar] [CrossRef]
- Li, E.; Mu, X.; Zhao, G.; Gao, P.; Sun, W. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River. Stoch. Environ. Res. Risk Assess. 2016, 31, 1791–1803. [Google Scholar] [CrossRef]
- Lee, K.; Huang, J. Runoff simulation considering time-varying partial contributing area based on current precipitation index. J. Hydrol. 2013, 486, 443–454. [Google Scholar] [CrossRef]
- Mo, S.; Gong, Y.; Li, J. Impact of human activities on flood process in Chabagou basin of the Loess Plateau, China. J. Basic Sci. Eng. 2019, 27, 492–508. [Google Scholar]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the loess plateau of china. J. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef]
- Bergkamp, G. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands. J. Catena 1998, 33, 201–220. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, S.; Baetz, B. Probabilistic rainfall-runoff transformation considering both infiltration and saturation excess runoff generation process. J. Water Resour. Res. 2012, 48, 6513. [Google Scholar]
- Kou, M.; Garcia, P.; Hu, S.; Jiao, J. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the loess plateau (China): A chronosequence approach. J. For. Ecol. Manag. 2016, 375, 146–158. [Google Scholar] [CrossRef]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K.; Peng, S. Characteristics of rainfall interception by Caragana korshinskii and Hippophae rhamnoides in Loess Plateau of Northwest China. J. Appl. Ecol. 2012, 23, 2383–2389. [Google Scholar]
- Li, N. Study on the Mechanism of Runoff Production and Confluence in the Loess Plateau under the Change of Underlying Surface. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2018. [Google Scholar]
- Mascha, J.; Nadine, W.; Christian, P.; Matthias, S.; Christoph, L.; Frank, M.; Thomas, F. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. J. Soil Biol. Biochem. 2009, 41, 2122–2130. [Google Scholar]
Forms | F(ϕ) | F′(ϕ) |
---|---|---|
Budyko | [ϕtanh(1/ϕ)(1 − e−ϕ)]0.5 | 0.5[ϕtanh(1/ϕ)(1 − e-ϕ)]0.5 × [(tanh(1/ϕ) − sech2(1/ϕ)/ϕ)(1 − e-ϕ) + ϕtanh(1/ϕ) e−ϕ] |
Turc-Pike | (1 + ϕ−2)−0.5 | 1/ϕ3 [(1 + (1/ϕ)2)1.5] |
Fubaopu | 1 + ϕ − (1 + ϕα)1/α | 1 − (1 + ϕα)1/α − 1ϕα − 1 |
Zhang | (1 + ωϕ)/(1 + ωϕ + 1/ϕ) | (ω + 2ω/ϕ−1 + 1/ ϕ2)/(1 + ωϕ + 1/ϕ)2 |
Type | Composition of Runoff | Impact Factors | Type | Composition of Runoff | Impact Factors |
---|---|---|---|---|---|
1 | R = Rs | P, E, W0, i | 6 | R = Rsat + Rint | P, E, W0, i |
2 | R = Rs + Rg | P, E, W0 | 7 | R = Rsat + Rint + Rg | P, E, W0 |
3 | R = Rg | P, E, W0 | 8 | R = Rint | P, E, W0, i |
4 | R = Rs + Rint | P, E, W0, i | 9 | R = Rint + Rg | P, E, W0 |
5 | R = Rs + Rint + Rg | P, E, W0 |
Objects | Excess Saturation Runoff | Excess Infiltration Runoff |
---|---|---|
Average annual rainfall | P > 1000 mm | P < 400 mm |
Runoff coefficient | >0.4 | <0.2 |
Symmetry of Flow Process Line | High | Low |
Impacts of rainfall intensity | Low | High |
Influencing factors of flow | Pa, P | Pa, i |
Surface soil structure | Loose | Compact |
Water shortage capacity | Small | Big |
Proportion of Rg | High | Low |
Relativity | Related to P | Related to i |
Variables | ZC | Significant | Mean Value (mm) | Change (%) | |
---|---|---|---|---|---|
1965–1997 | 1998–2010 | ||||
P | −0.08 | ns | 427.1 | 402.4 | −2.5 |
E0 | −0.29 | ns | 2426.3 | 2410.7 | −0.0 |
R | −4.53 | ** | 60.5 | 13.9 | −77.0 |
Variables | Budyko | Turc-Pike | Fubaopu | Zhang | Average |
---|---|---|---|---|---|
εP | 2.6 | 2.7 | 2.4 | 2.3 | 2.5 |
ΔRC (mm) | −6.8 | −7.0 | −6.3 | −6.0 | −6.5 |
ΔRH (mm) | −39.8 | −39.6 | −40.3 | −40.6 | −40.1 |
ΔRC (%) | 14.6 | 15.1 | 13.5 | 12.9 | 13.9 |
ΔRH (%) | 85.4 | 84.9 | 86.5 | 87.1 | 86.1 |
Type | Farmland (km2) | Forest (km2) | Grass (km2) | Water (km2) | Urban Construction (km2) | Sum (km2) | |
---|---|---|---|---|---|---|---|
Year | |||||||
1976 | 413.68 | 65.47 | 774.55 | 12.28 | 6.02 | 1272 | |
1996 | 405.94 | 48.41 | 800.32 | 12.82 | 4.51 | 1272 | |
2006 | 389.16 | 83.69 | 779.94 | 12.16 | 7.05 | 1272 | |
Average | 402.93 | 65.85 | 784.94 | 12.42 | 5.86 | 1272 | |
Proportion (%) | 31.68 | 5.18 | 61.71 | 0.97 | 0.46 | 100 |
Characteristics | 1965–1997 | 1998–2010 | Change (%) |
---|---|---|---|
Mean rainfall duration (h) | 12.3 | 17.3 | 40.7 |
Mean rainfall (mm) | 47.9 | 38.0 | −20.7 |
Mean flood duration (h) | 47.6 | 53.8 | 13.0 |
Mean peak flow (m3/s) | 1480.6 | 314.7 | −78.7 |
Pattern | Excess Infiltration Runoff | Excess Saturation Runoff | Mixed Runoff | Sum | |
---|---|---|---|---|---|
Year | |||||
First stage 1965–1997 | 76 (68.46%) | 1 (0.10%) | 34 (30.63%) | 111 (100%) | |
Second stage 1998–2010 | 11 (45.83%) | 3 (12.50%) | 10 (41.67%) | 24 (100%) | |
Sum | 87 (64.44%) | 4 (2.96%) | 44 (32.60%) | 135 (100%) |
Items | 1965–1997 | 1998–2010 | Change (%) |
---|---|---|---|
Forest areas (km2) | 55.94 | 83.69 | 49.61 |
Annual minimum flow (m3/s) | 1.01 | 1.40 | 32.67 |
Minimum daily flow in flood season (m3/s) | 1.93 | 2.78 | 44.04 |
Mean precipitation before generate flow (mm) | 9.7 | 18.5 | 90.72 |
Duration of flood recession (h) | 14.32 | 21.54 | 50.42 |
Catchment water storage capacity (mm) | 73.17 | 95.38 | 30.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Zhang, L.; Wu, Q.; Soomro, S.-e.-h.; Jian, S. Response of LUCC on Runoff Generation Process in Middle Yellow River Basin: The Gushanchuan Basin. Water 2020, 12, 1237. https://doi.org/10.3390/w12051237
Hu C, Zhang L, Wu Q, Soomro S-e-h, Jian S. Response of LUCC on Runoff Generation Process in Middle Yellow River Basin: The Gushanchuan Basin. Water. 2020; 12(5):1237. https://doi.org/10.3390/w12051237
Chicago/Turabian StyleHu, Caihong, Li Zhang, Qiang Wu, Shan-e-hyder Soomro, and Shengqi Jian. 2020. "Response of LUCC on Runoff Generation Process in Middle Yellow River Basin: The Gushanchuan Basin" Water 12, no. 5: 1237. https://doi.org/10.3390/w12051237
APA StyleHu, C., Zhang, L., Wu, Q., Soomro, S. -e. -h., & Jian, S. (2020). Response of LUCC on Runoff Generation Process in Middle Yellow River Basin: The Gushanchuan Basin. Water, 12(5), 1237. https://doi.org/10.3390/w12051237