Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits
Abstract
:1. Introduction
2. Water Demand and Availability and Reuse Applications
3. Health and Safety including Water Treatment
4. Governance
5. Feasibility of the Proposed Regulation for a Specific Water Reuse Case
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission (EC). Water Reuse. 2018. Available online: http://ec.europa.eu/environment/water/reuse.htm (accessed on 9 March 2020).
- Water Research Europe (WRE). Water Reuse Europe Review. 2018. Available online: https://www.water-reuse-europe.org/wp-content/uploads/2018/08/wre_review2018_final.pdf (accessed on 9 March 2020).
- Narain, D.M.; Bartholomeus, R.P.; Dekker, S.C.; Van Wezel, A.P. Natural purification through soils: Risks and opportunities of sewage effluent reuse in sub-surface irrigation. Rev. Environ. Contam. Toxicol. 2020, in press. [Google Scholar]
- Hamilton, A.J.; Stagnitti, F.; Xiong, X.; Kreidl, S.L.; Benke, K.K.; Maher, P. Wastewater irrigation: The state of play. Vadose Zone J. 2007, 6, 823–840. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Yan, X.; Zhu, Q.; Liao, C. The utilization of reclaimed water: Possible risks arising from waterborne contaminants. Environ. Pollut. 2019, 254, 113020. [Google Scholar] [CrossRef]
- Akpor, O.; Otohinoyi, D.; Olaolu, D.; Aderiye, B. Pollutants in wastewater effluents: Impacts and remediation processes. Int. J. Environ. Res. Earth Sci. 2014, 3, 50–59. [Google Scholar]
- Moazeni, M.; Nikaeen, M.; Hadi, M.; Moghim, S.; Mouhebat, L.; Hatamzadeh, M.; Hassanzadeh, A. Estimation of health risks caused by exposure to enteroviruses from agricultural application of wastewater effluents. Water Res. 2017, 125, 104–113. [Google Scholar] [CrossRef]
- Hoogenboezem, W.; Ketelaars, H.; Medema, G.; Rijs, G.; Schijven, J. Cryptosporidium en Giardia: Voorkomen in Rioolwater, Mest en Oppervlaktewater Met Zwem-En Drinkwaterfunctie. RlWA/RIVM/KIWA Report. Available online: http://publicaties.minienm.nl/documenten/cryptosporidium-en-giardia-voorkomen-in-rioolwater-mest-en-opper (accessed on 16 April 2020).
- Sharma, M.; Handy, E.T.; East, C.L.; Kim, S.; Jiang, C.; Callahan, M.T.; Allard, S.M.; Micallef, S.; Craighead, S.; Anderson-Coughlin, B.; et al. Prevalence of Salmonella and Listeria monocytogenes in non-traditional irrigation waters in the Mid-Atlantic United States is affected by water type, season, and recovery method. PLoS ONE 2020, 15, e0229365. [Google Scholar] [CrossRef]
- Panthi, S.; Sapkota, A.R.; Raspanti, G.; Allard, S.M.; Bui, A.; Craddock, H.A.; Murray, R.; Zhu, L.; East, C.; Handy, E.; et al. Pharmaceuticals, herbicides, and disinfectants in agricultural water sources. Environ. Res. 2019, 174, 1–8. [Google Scholar] [CrossRef]
- Van Houtte, E.; Verbauwhede, J. Long-time membrane experience at Torreele’s water re-use facility in Belgium. Desalin. Water Treat. 2013, 51, 4253–4262. [Google Scholar] [CrossRef]
- Pintilie, L.; Torres, C.M.; Teodosiu, C.; Castells, F. Urban wastewater reclamation for industrial reuse: An LCA case study. J. Clean. Prod. 2016, 139, 1–14. [Google Scholar] [CrossRef]
- Ternes, T.A.; Bonerz, M.; Herrmann, N.; Teiser, B.; Andersen, H.R. Irrigation of treated wastewater in Braunschweig, Germany: An option to remove pharmaceuticals and musk fragrances. Chemosphere 2007, 66, 894–904. [Google Scholar] [CrossRef]
- Devaux, I.; Gerbaud, L.; Planchon, C.; Bontoux, J.; Glanddier, P.Y. Infectious risk associated with wastewater reuse: An epidemiological approach applied to the case of Clermont-Ferrand, France. Water Sci. Technol. 2001, 43, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Giannoccaro, G.; Arborea, S.; de Gennaro, B.C.; Iacobellis, V.; Piccinni, A.F. Assessing reclaimed urban wastewater for reuse in agriculture: Technical and economic concerns for Mediterranean Regions. Water 2019, 11, 1511. [Google Scholar] [CrossRef] [Green Version]
- Bartholomeus, R.P.; Huijgevoort, M.H.J.; van Loon, A.H.; van den Eertwegh, G.A.P.H.; Raat, K.J. Matching agricultural freshwater supply and demand – using recycled water for subirrigation purposes. In Proceedings of the 12th IWA International Conference on Water Reclamation and Reuse, Berlin, Germany, 16–20 June 2019. [Google Scholar]
- Zuurbier, K.G.; Smeets, P.W.M.H.; Roest, K.; van Vierssen, W. Use of Wastewater in Managed Aquifer Recharge for Agricultural and Drinking Purposes: The Dutch Experience. In Safe Use of Wastewater in Agriculture; Hettiarachchi, H., Ardakanian, R., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- European Commission (EC). A Blueprint to Safeguard Europe’s Water Resources. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52012DC0673 (accessed on 16 April 2020).
- Alcalde-Sanz, L.; Gawlik, B.M. Minimum Quality Requirements for Water Reuse in Agricultural Irrigation and Aquifer Recharge—Towards a Legal Instrument on Water Reuse at EU Level; EUR 28962 EN, Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- European Commission (EC). Proposal for a Regulation of the European Parliament and of the Council on Minimum Requirements for Water Reuse. 2018. Available online: https://ec.europa.eu/environment/water/pdf/water_reuse_regulation.pdf (accessed on 9 March 2020).
- European Council. Water Reuse for Agricultural Irrigation: Council Adopts New Rules. Available online: https://www.consilium.europa.eu/en/press/press-releases/2020/04/07/water-reuse-for-agricultural-irrigation-council-adopts-new-rules (accessed on 16 April 2020).
- Rizzo, L.; Krätke, R.; Linders, J.; Scott, M.; Vighi, M.; de Voogt, P. Proposed EU minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge: SCHEER scientific advice. Curr. Opin. Environ. Sci. Health 2018, 2, 7–11. [Google Scholar] [CrossRef]
- Dingemans, M.M.L.; Bartholomeus, R.P.; Medema, G.J. Evaluation of the Proposed EU Regulation on Minimum Requirements for Water Reuse for Irrigation. KWR Report. 2018. Available online: https://library.kwrwater.nl/publication/56467244/ (accessed on 9 March 2020).
- Drewes, J.E.; Hübner, U.; Zhiteneva, V.; Karakurt, S. Characterization of Unplanned Water Reuse in the EU; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Beard, J.E.; Bierkens, M.F.P.; Bartholomeus, R.P. Following the Water: Characterising de facto Wastewater Reuse in Agriculture in the Netherlands. Sustainability 2019, 11, 5936. [Google Scholar] [CrossRef] [Green Version]
- Thebo, A.L.; Drechsel, P.; Lambin, E.; Nelson, K. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows. Environ. Res. Lett. 2017, 12, 074008. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Sprenger, C.; Hartog, N.; Hernández, M.; Vilanova, E.; Grützmacher, G.; Scheibler, F.; Hannappel, S. Inventory of managed aquifer recharge sites in Europe: Historical development, current situation and perspectives. Hydrogeol. J. 2017, 25, 1909. [Google Scholar] [CrossRef] [Green Version]
- Hamann, E.; Stuyfzand, P.J.; Greskowiak, J.; Timmer, H.; Massmann, G. The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci. Total Environ. 2016, 545, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Nham, H.T.; Greskowiak, J.; Nödler, K.; Rahman, M.A.; Spachos, T.; Rusteberg, B.; Massmann, G.; Sauter, M.; Licha, T. Modeling the transport behavior of 16 emerging organic contaminants during soil aquifer treatment. Sci. Total Environ. 2015, 514, 450–458. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Available online: https://www.who.int/water_sanitation_health/publications/gsuweg4/ (accessed on 9 March 2020).
- Metcalf, L.; Harrison, P.E.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 2004; Volume 4. [Google Scholar]
- Van Wezel, A.P.; Ter Laak, T.L.; Fischer, A.; Bäuerlein, P.S.; Munthe, J.; Posthuma, L. Mitigation options for chemicals of emerging concern in surface waters; operationalising solutions-focused risk assessment. Environ. Sci. Water Res. Technol. 2017, 3, 403–414. [Google Scholar] [CrossRef]
- Smeets, P.W.M.H.; Linden, K.; Miehe, U. Rolling literature review on pathogen reduction by water treatment processes. In Proceedings of the 12th IWA International Conference on Water Reclamation and Reuse, Berlin, Germany, 16–20 June 2019. [Google Scholar]
- Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, Australian Health Ministers’ Conference (NRMMC-EPHC-AHMC). Australian Guidelines for Water Recycling: Managing Health and Environmental Risks: Phase 1. National Water Quality Management Strategy. 2006. Available online: https://www.waterquality.gov.au/guidelines/recycled-water#managing-health-and-environmental-risks-phase-1 (accessed on 9 March 2020).
- Toze, S. PCR and the detection of microbial pathogens in water and wastewater. Water Res. 1999, 33, 3545–3556. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Medema, G.J. Elimination of Micro-Organisms by Water Treatment Processes; IWA Publishing: London, UK, 2010. [Google Scholar]
- Caicedo, C.; Rosenwinkel, K.H.; Exner, M.; Verstraete, W.; Suchenwirth, R.; Hartemann, P.; Nogueira, R. Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. Water Res. 2019, 149, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Garrison, L.E.; Kunz, J.M.; Cooley, L.A.; Moore, M.R.; Lucas, C.; Schrag, S.; Sarisky, J.; Whitney, C.G. Vital Signs: Deficiencies in Environmental Control Identified in Outbreaks of Legionnaires’ Disease—North America, 2000–2014. Morb. Mortal. Wkly. Rep. 2016, 65, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Van Heijnsbergen, E.; Schalk, J.A.; Euser, S.M.; Brandsema, P.S.; den Boer, J.W.; de Roda Husman, A.M. Confirmed and Potential Sources of Legionella Reviewed. Environ. Sci. Technol. 2015, 49, 4797–4815. [Google Scholar] [CrossRef]
- Petzold, M.; Prior, K.; Moran-Gilad, J.; Harmsen, D.; Lück, C. Epidemiological information is key when interpreting whole genome sequence data - lessons learned from a large Legionella pneumophila outbreak in Warstein, Germany, 2013. EuroSurveill 2017, 22. [Google Scholar] [CrossRef]
- Van der Kooij, D.; van der Wielen, P.W.J.J. Microbial Growth in Drinking Water Supplies; IWA Publishing: London, UK, 2013. [Google Scholar]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Anderson, M.; Clift, C.; Schulze, K.; Sagan, A.; Nahrgang, S.; Ait Ouakrim, D.; Mossialos, E. Averting the AMR crisis: What are the Avenues for Policy Action for Countries in Europe; Policy Brief, No. 32; European Observatory on Health Systems and Policies: Copenhagen, Denmark, 2019. [Google Scholar]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Baken, K.A.; Sjerps, R.M.A.; Schriks, M.; van Wezel, A.P. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern. Environ. Int. 2018, 118, 293–303. [Google Scholar] [CrossRef]
- Coppens, L.J.C.; Van Gils, J.; Ter Laak, T.; Raterman, B.; van Wezel, A.P. Towards spatially smart abatement of human pharmaceuticals in surface waters: Defining impact of sewage treatment plants on susceptible functions. Water Res. 2015, 81, 356–365. [Google Scholar] [CrossRef]
- Gibson, R.; Durán-Álvarez, J.C.; Estrada, K.L.; Chávez, A.; Jiménez Cisneros, B. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere 2010, 81, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, L.; Chang, A.C.; Zhang, Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Jalali, M.; Merikhpour, H.; Kaledhonkar, M.J.; Van Der Zee, S.E.A.T.M. Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils. Agric. Water Manag. 2008, 95, 143–153. [Google Scholar] [CrossRef]
- Sjerps, R.M.A.; Brunner, A.M.; Fujita, Y.; Bajema, B.; de Jonge, M.; Bäuerlein, P.S.; de Munk, J.; Schriks, M. Clustering and Prioritisation to Design a Risk Based Monitoring Program in Groundwater Sources for Drinking Water. KWR Report. 2018. Available online: https://library.kwrwater.nl/publication/56103342/ (accessed on 9 March 2020).
- European Commission (EC). Drinking Water Directive in the Directory of European Union consolidated Legislation. 2015. Available online: https://eur-lex.europa.eu/eli/dir/1998/83/2015-10-27 (accessed on 9 March 2020).
- Brunner, A.M.; Dingemans, M.M.; Baken, K.A.; van Wezel, A.P. Prioritizing anthropogenic chemicals in drinking water and sources through combined use of mass spectrometry and ToxCast toxicity data. J. Hazard. Mater. 2019, 364, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Brack, W.; Ait Aissa, S.; Backhaus, T.; Dulio, V.; Escher, B.I.; Faust, M.; Hilscherova, K.; Hollender, J.; Hollert, H.; Müller, C.; et al. Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ. Sci. Eur. 2019, 31, 10. [Google Scholar] [CrossRef]
- Dingemans, M.M.L.; Baken, K.A.; van der Oost, R.; Schriks, M.; van Wezel, A.P. Risk-based approach in the revised European Union drinking water legislation: Opportunities for bioanalytical tools. Integr. Environ. Assess. Manag. 2019, 15, 126–134. [Google Scholar] [CrossRef]
- Guillossou, R.; Le Roux, J.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Gasperi, J.; Rocher, V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 2019, 218, 1050–1060. [Google Scholar] [CrossRef]
- Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.; van Wezel, A.P.; Hollender, J.; Cornelissen, E.; Hofman, R.; van der Hoek, J.P. Development and application of relevance and reliability criteria for water treatment removal efficiencies of chemicals of emerging concern. Water Res. 2019, 161, 274–287. [Google Scholar] [CrossRef]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef]
- Voulvoulis, N.; Barceló, D.; Verlicchi, P. Pharmaceutical residues in sewage treatment works and their fate in the receiving environment. Issues Environ. Sci. Technol. 2016, 41, 120–179. [Google Scholar]
- Frijns, J.; Smith, H.M.; Brouwer, S.; Garnett, K.; Elelman, R.; Jeffrey, P. How governance regimes shape the implementation of water reuse schemes. Water 2016, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Agency (EFSA). EFSA Guidance Document for Predicting Environmental Concentrations of Active Substances of Plant Protection Products and Transformation Products of These Active Substances in Soil. 2017. Available online: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2017.4982 (accessed on 9 March 2020).
- Jeffrey, P.; Fawell, J.; Le Corre, K.; Frijns, J. Applying Regulation to Water Reuse: The Case of the EU. 2017. Available online: http://www.globalwaterforum.org/2017/11/19/applying-regulation-to-water-reuse-the-case-of-the-eu/ (accessed on 9 March 2020).
- Goodwin, D.; Raffin, M.; Jeffrey, P.; Smith, H.M. Applying the water safety plan to water reuse: Towards a conceptual risk management framework. Environ. Sci. Water Res. Technol. 2015, 1, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Binz, C.; Harris-Lovett, S.; Kiparsky, M.; Sedlak, D.L.; Truffer, B. The thorny road to technology legitimation—Institutional work for potable water reuse in California. Technol. Forecast Soc. Chang. 2016, 103, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.M.; Brouwer, S.; Jeffrey, P.; Frijns, J. Public responses to water reuse—Understanding the evidence. J. Environ. Manag. 2018, 207, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, T.; Claassen, L.; van Kamp, I.; Timmermans, D.R.M. ’All chemical substances are harmful.’ public appraisal of uncertain risks of food additives and contaminants. Food Chem. Toxicol. 2020, 136, 110959. [Google Scholar] [CrossRef]
- Tahir, S.; Steichen, T.; Shouler, M. Water and Circular Economy: A White Paper. Ellen MacArthur Foundation, Arup, Antea Group. 2018. Available online: https://nextgenwater.eu/wp-content/uploads/2018/10/Water_and_circular_economy-Co.Project_White_paper.pdf (accessed on 14 April 2020).
- Smol, M.; Adam, C.; Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 2020, 22, 682–697. [Google Scholar] [CrossRef] [Green Version]
- Ayars, J.E.; Christen, E.W.; Hornbuckle, J.W. Controlled drainage for improved water management in arid regions irrigated agriculture. Agric. Water Manag. 2006, 86, 128–139. [Google Scholar] [CrossRef]
- Bartholomeus, R.P.; Worm, B.; Oosterhuis, M.; Eertwegh, G.A.P.H.; Raat, K. Reuse of treated wastewater in agriculture? H2O Water Matters 2016, I, 1–6. [Google Scholar]
ISO Guidelines 20426, 20468, 20469 (2018) |
WHO Guidelines for the safe use of wastewater, excreta and greywater (2006, revision ongoing) |
WHO’s Guidance of potable reuse (2017) |
USEPA Guidelines for water reuse (2012) |
US and California’s Title 22 (updated in 2015) |
Colorado incorporated water reuse in regulatory framework (no other states or US federal rules) |
US federal regulation Food Safety Modernisation Act (2017) (relevant for crop irrigation in Latin America) |
Australian Guidelines for Water Recycling (2006) |
Oman national guidelines for water reuse |
National standards of EU Member States (e.g. Spain Royal Decree 1620/2007) |
EU Minimum requirements for water reuse in agriculture (legislation in consultation phase) |
United Arab Emirates develops legal framework for water reuse (feasibility studies ongoing) |
Saudi Arabia restructured water-related organizations and ministries to clarify responsibilities |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dingemans, M.M.L.; Smeets, P.W.M.H.; Medema, G.; Frijns, J.; Raat, K.J.; van Wezel, A.P.; Bartholomeus, R.P. Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits. Water 2020, 12, 1264. https://doi.org/10.3390/w12051264
Dingemans MML, Smeets PWMH, Medema G, Frijns J, Raat KJ, van Wezel AP, Bartholomeus RP. Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits. Water. 2020; 12(5):1264. https://doi.org/10.3390/w12051264
Chicago/Turabian StyleDingemans, Milou M. L., Patrick W. M. H. Smeets, Gertjan Medema, Jos Frijns, Klaasjan J. Raat, Annemarie P. van Wezel, and Ruud P. Bartholomeus. 2020. "Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits" Water 12, no. 5: 1264. https://doi.org/10.3390/w12051264
APA StyleDingemans, M. M. L., Smeets, P. W. M. H., Medema, G., Frijns, J., Raat, K. J., van Wezel, A. P., & Bartholomeus, R. P. (2020). Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits. Water, 12(5), 1264. https://doi.org/10.3390/w12051264