Impacts of Filled Check Dams with Different Deployment Strategies on the Flood and Sediment Transport Processes in a Loess Plateau Catchment
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site and Data Sources
2.2. The Integrated Hydrology Model (InHM)
2.3. Modelling Scenario
2.4. Model Settings and Parameters
2.4.1. Finite-Element Mesh
2.4.2. Boundary Conditions and Initial Conditions
2.4.3. Model Parameters
2.4.4. Model Calibration and Validation
2.4.5. Evaluation Criteria
3. Results
3.1. Variation Characteristics of Flood Processes under Different Deployment Strategies
3.2. Variation Characteristics of Sediment Transport Processes under Different Deployment Strategies
3.3. Erosion/Deposition Distribution in the Catchment under Different Deployment Strategies
- Increasing the number of check dams, especially large check dams, can significantly promote sediment deposition in the channel (e.g., Figure 7a–c,e,g). More check dams mean more elevated sedimentary lands with low channel gradients, creating a larger buffer zone for flood attenuation.
- The location and size of check dams do matter in sediment deposition. A large check dam on the main channel will create a larger deposition area than a small check dam (e.g., comparison of scenario-4 and scenario-5 in Figure 7e,f).
- Deployment strategies that can connect the sedimentary lands formed by different check dams lead to a better performance in flood attenuation and sediment reduction. For example, the performances of scenarios 6, 4, and 2 in the reduction of flood peak, sediment yield and eroded sediment were generally better than the performances of scenarios 3, 5, 7.
4. Discussion
4.1. Potential Benefits of Filled Check Dams in Flood and Erosion Control
4.2. Implications of Future Check Dam Deployment
4.3. Limitations and Future Work
5. Conclusions
- The number of large check dams on the main channel appears to be the most important factor influencing the flood and sediment transport processes.
- Connecting the sedimentary lands of large check dams via proper site selection is helpful for flood attenuation and sediment reduction.
- The area of sedimentary lands dominates the reduction rates of water/sediment peak discharge, while the size combination and site location can make a difference in the reduction of flood volume, sediment yield, and the total eroded sediment.
- Targeted treatment to heavily eroded gullies (e.g., scenario-5) will improve the sediment-reduction performance of the system, which requires a sediment-contribution analysis of each gullies via modelling practices or field observation to aid the site selection.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The Integrated Hydrologic Model (InHM)
Appendix A.1. Hydrologic-Response Module
Appendix A.2. Sediment-Transport Module
References
- Conesa-García, C.; López-Bermúdez, F.; García-Lorenzo, R. Bed stability variations after check dam construction in torrential channels (South-East Spain). Earth Surf. Process. Landf. 2007, 32, 2165–2184. [Google Scholar] [CrossRef]
- Garcia, C.; Mario, M. Check Dams, Morphological Adjustments and Erosion Control in Torrential Streams; Nova Science Publishers: New York, NY, USA, 2010; pp. 8–15. [Google Scholar]
- Abbasi, N.A.; Xu, X.Z.; Lucas-Borja, M.E.; Dang, W.Q.; Liu, B. The use of check dams in watershed management projects: Examples from around the world. Sci. Total Environ. 2019, 676, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Borja, M.E.; Piton, G.; Nichols, M.; Castillo, C.; Yang, Y.; Zema, D.A. The use of check dams for soil restoration at watershed level: A century of history and perspectives. Sci. Total Environ. 2019, 692, 37–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piton, G.; Recking, A. Design of Sediment Traps with Open Check Dams. I: Hydraulic and Deposition Processes. J. Hydraul. Eng. 2016, 142, 16. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Hinojosa Guzman, M.D.; Yang, Y.; Hernández, A.C.; Xiangzhou, X.; Carrà, B.G.; Nichols, M.; Cerdá, A. Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in México. Ecol. Eng. 2018, 122, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Gutiérrez, V.; Mongil-Manso, J.; Navarro-Hevia, J.; Ramos-Díez, I. Check dams and sediment control: Final results of a case study in the upper Corneja River (Central Spain). J. Soils Sediments 2019, 19, 16. [Google Scholar] [CrossRef]
- Catella, M.; Paris, E.; Solari, L. Case study: Efficiency of slit-check dams in the mountain region of Versilia Basin. J. Hydraul. Eng. 2005, 131, 145–152. [Google Scholar] [CrossRef]
- Hassanli, A.M.; Nameghi, A.E.; Beecham, S. Evaluation of the effect of porous check dam location on fine sediment retention (a case study). Environ. Monit. Assess. 2009, 152, 319. [Google Scholar] [CrossRef]
- Xu, X.Z.; Zhang, H.W.; Zhang, O.Y. Development of check-dam systems in gullies on the Loess Plateau, China. Environ. Sci. Policy 2004, 7, 79–86. [Google Scholar]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Xin, Z.B.; Yu, B.F.; Han, Y.G. Spatiotemporal Variations in Annual Sediment Yield from the Middle Yellow River, China, 1950–2010. J. Hydrol. Eng. 2015, 20, 15. [Google Scholar]
- Jin, Z.; Cui, B.L.; Song, Y.; Shi, W.Y.; Wang, K.B.; Wang, Y.; Liang, J. How Many Check Dams Do We Need To Build on the Loess Plateau? Environ. Sci. Technol. 2012, 46, 8527–8528. [Google Scholar] [CrossRef] [PubMed]
- Ran, D.; Luo, Q.; Zhou, Z.; Wang, G.; Zhang, X. Sediment retention by check dams in the Hekouzhen-Longmen Section of the Yellow River. Int. J. Sediment Res. 2008, 23, 159–166. [Google Scholar] [CrossRef]
- Rustomji, P.; Zhang, X.P.; Hairsine, P.B.; Zhang, L.; Zhao, J. River sediment load and concentration responses to changes in hydrology and catchment management in the Loess Plateau region of China. Water Resour. Res. 2008, 44, 17. [Google Scholar] [CrossRef]
- Shi, H.; Wang, G. Impacts of climate change and hydraulic structures on runoff and sediment discharge in the middle Yellow River. Hydrol. Process. 2015, 29, 3236–3246. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fu, B.; He, C. Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrol. Earth Syst. Sci. 2013, 17, 2185–2193. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Shao, M.; Wang, T. Spatial Distributions of Soil Surface-Layer Saturated Hydraulic Conductivity and Controlling Factors on Dam Farmlands. Water Resour. Manag. 2010, 24, 2247–2266. [Google Scholar] [CrossRef]
- Huang, J.; Hinokidani, O.; Yasuda, H.; Ojha, C.S.P.; Kajikawa, Y.; Li, S. Effects of the Check Dam System on Water Redistribution in the Chinese Loess Plateau. J. Hydrol. Eng. 2013, 18, 929–940. [Google Scholar] [CrossRef]
- Tang, H.; Ran, Q.; Gao, J. Physics-Based Simulation of Hydrologic Response and Sediment Transport in a Hilly-Gully Catchment with a Check Dam System on the Loess Plateau. Water 2019, 11, 1161. [Google Scholar] [CrossRef] [Green Version]
- Guyassa, E.; Frankl, A.; Zenebe, A.; Poesen, J.; Nyssen, J. Effects of check dams on runoff characteristics along gully reaches, the case of Northern Ethiopia. J. Hydrol. 2017, 545, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.; Galelli, S.; Tang, H.; Ran, Q. Toward improved design of check dam systems: A case study in the Loess Plateau, China. J. Hydrol. 2018, 559, 762–773. [Google Scholar] [CrossRef]
- Pal, D.; Galelli, S. A numerical framework for the multi-objective optimal design of check dam systems in erosion-prone areas. Environ. Model. Softw. 2019, 119, 21–31. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Z.; Li, P.; Xu, G.; Gao, H.; Xiao, L.; Wang, F.; Wang, T. Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau. Water 2019, 11, 834. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Li, Q.; Cai, Q.; Liao, Y. Spatial scale dependence of sediment dynamics in a gullied rolling loess region on the Loess Plateau in China. Environ. Earth Sci. 2011, 64, 13. [Google Scholar] [CrossRef]
- Ran, Q.; Hong, Y.; Chen, X.; Gao, J.; Ye, S. Impact of soil properties on water and sediment transport: A case study at a small catchment in the Loess Plateau. J. Hydrol. 2019, 574, 211–225. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Wang, H.; Xiao, J. Influence of intra-event-based flood regime on sediment flow behavior from a typical agro-catchment of the Chinese Loess Plateau. J. Hydrol. 2016, 538, 71–81. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- YRCC. Dataset of Hydrological Experiments at Zizhou Station in the Yellow River Basin (1959–1969); Data Sharing Infrastructure of Earth System Science_Data Sharing Infrastructure of Loess Plateau; YRCC. 2012. Available online: http://www.geodata.cn/data/datadetails.html?dataguid=190520812859307&docId=9284 (accessed on 7 May 2020).
- Yang, Q. Land Use Map (30 m Resolution) of the Area with Abundant and Coarse Sediment of the Loess Plateau; Data Sharing Infrastructure of Earth System Science_Data Sharing Infrastructure of Loess Plateau. 2011. Available online: http://www.geodata.cn/data/datadetails.html?dataguid=69574164479925&docId=9166 (accessed on 7 May 2020).
- Freeze, R.A.; Harlan, R.L. Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol. 1969, 9, 237–258. [Google Scholar] [CrossRef]
- VanderKwaak, J.E. Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic Systems. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 1999. [Google Scholar]
- Heppner, C.S.; Ran, Q.H.; VanderKwaak, J.E.; Loague, K. Adding sediment transport to the integrated hydrology model (InHM): Development and testing. Adv. Water Resour. 2006, 29, 930–943. [Google Scholar] [CrossRef]
- Ran, Q.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K. Further testing of the integrated hydrotogy modet (InHM): Multipte-species sediment transport. Hydrol. Process. 2007, 21, 1522–1531. [Google Scholar] [CrossRef]
- Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K. First-order exchange coefficient coupling for simulating surface water–groundwater interactions: Parameter sensitivity and consistency with a physics-based approach. Hydrol. Process. 2009, 23, 1949–1959. [Google Scholar] [CrossRef]
- VanderKwaak, J.E.; Loague, K. Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour. Res. 2001, 37, 999–1013. [Google Scholar] [CrossRef]
- Mirus, B.B.; Loague, K. How runoff begins (and ends): Characterizing hydrologic response at the catchment scale. Water Resour. Res. 2013, 49, 2987–3006. [Google Scholar] [CrossRef]
- Fatichi, S.; Vivoni, E.R.; Ogden, F.L.; Ivanov, V.Y.; Mirus, B.; Gochis, D.; Downer, C.W.; Camporese, M.; Davison, J.H.; Ebel, B.; et al. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol. 2016, 537, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Mu, X.; Holden, J.; Wu, Y.; Irvine, B.; Wang, F.; Gao, P.; Zhao, G.; Sun, W. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth-Sci. Rev. 2017, 170, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Ran, Q.; Tong, J.; Shao, S.; Fu, X.; Xu, Y. Incompressible SPH scour model for movable bed dam break flows. Adv. Water Resour. 2015, 82, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Shao, S.; Khayyer, A.; Duan, W.; Ma, Q.; Liao, K. Corrected First-Order Derivative ISPH in Water Wave Simulations. Coast. Eng. J. 2017, 59, 1750010. [Google Scholar] [CrossRef]
- Ni, G.; Liu, Z.; Lei, Z.; Yang, D.; Wang, L. Continuous simulation of water and soil erosion in a small watershed of the Loess Plateau with a distributed model. J. Hydrol. Eng. 2008, 13, 392–399. [Google Scholar] [CrossRef]
- Heppner, C.S.; Loague, K. A dam problem: Simulated upstream impacts for a Searsville-like watershed. Ecohydrology 2008, 1, 408–424. [Google Scholar] [CrossRef]
- Mirus, B.B.; Ebel, B.A.; Loague, K.; Wemple, B.C. Simulated effect of a forest road on near-surface hydrologic response: Redux. Earth Surf. Process. Landf. 2007, 32, 126–142. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Chen, L.; Lu, Y.; Gao, Y. Check Dam in the Loess Plateau of China: Engineering for Environmental Services and Food Security. Environ. Sci. Technol. 2011, 45, 10298–10299. [Google Scholar] [CrossRef] [PubMed]
- Porto, P.; Gessler, J. Ultimate bed slope in calabrian streams upstream of check dams: Field study. J. Hydraul. Eng. 1999, 125, 1231–1242. [Google Scholar] [CrossRef]
- Heppner, C.S.; Loague, K.; VanderKwaak, J.E. Long-term InHM simulations of hydrologic response and sediment transport for the R-5 catchment. Earth Surf. Process. Landf. 2007, 32, 1273–1292. [Google Scholar] [CrossRef]
- Ran, Q.; Loague, K.; VanderKwaak, J.E. Hydrologic-response-driven sediment transport at a regional scale, process-based simulation. Hydrol. Process. 2012, 26, 159–167. [Google Scholar] [CrossRef]
- Gabet, E.J.; Dunne, T. Sediment detachment by rain power. Water Resour. Res. 2003, 39, 1002. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.L.; Zhang, Q.W.; Shen, N.; Liu, J. Modelling sheet erosion on steep slopes in the loess region of China. J. Hydrol. 2017, 553, 549–558. [Google Scholar] [CrossRef]
- Xia, L.; Song, X.; Fu, N.; Cui, S.; Li, L.; Li, H.; Li, Y. Effects of rock fragment cover on hydrological processes under rainfall simulation in a semi-arid region of China. Hydrol. Process. 2018, 32, 792–804. [Google Scholar] [CrossRef]
- Wang, L.; Yao, W.; Tang, J.; Wang, W.; Hou, X. Identifying the driving factors of sediment delivery ratio on individual flood events in a long-term monitoring headwater basin. J. Mt. Sci. 2018, 15, 1825–1835. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, X. Loess Plateau soil erosion governance and runoff-sediment variation of Yellow River. Water Resour. Hydropower Eng. 2020, 51, 1–11. (In Chinese) [Google Scholar]
- Kang, R.S.; Chacko, E.; Kaur, D.; Viadero, R. Silting patterns in the reservoirs of small-and medium-sized earthen check dams in humid subtropical monsoon regions. Earth Surf. Process. Landf. 2019, 44, 2638–2648. [Google Scholar] [CrossRef]
- Li, X.; Wei, X.; Wei, N. Correlating check dam sedimentation and rainstorm characteristics on the Loess Plateau, China. Geomorphology 2016, 265, 84–97. [Google Scholar] [CrossRef]
- Fang, H.Y.; Cai, Q.G.; Chen, H.; Li, Q.Y. Temporal changes in suspended sediment transport in a gullied loess basin: The lower Chabagou Creek on the Loess Plateau in China. Earth Surf. Process. Landf. 2008, 33, 1977–1992. [Google Scholar] [CrossRef]
- Yu, G.Q.; Zhang, M.S.; Li, Z.B.; Li, P.; Zhang, X.; Cheng, S.D. Piecewise prediction model for watershed-scale erosion and sediment yield of individual rainfall events on the Loess Plateau, China. Hydrol. Process. 2014, 28, 5322–5336. [Google Scholar]
- Fu, S.; Yang, Y.; Liu, B.; Liu, H.; Liu, J.; Liu, L.; Li, P. Peak flow rate response to vegetation and terraces under extreme rainstorms. Agric. Ecosyst. Environ. 2020, 288, 106714. [Google Scholar] [CrossRef]
- Armanini, A.; Larcher, M. Rational criterion for designing opening of slit-check dam. J. Hydraul. Eng. 2001, 127, 94–104. [Google Scholar] [CrossRef]
- Tang, H. Analysis of Runoff/Sediment Reduction Efficiency of Check-Dam in Its Lifespan. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
Data Type | Year | Resoloution | Data Source | Used in This Study |
---|---|---|---|---|
Topography data | 1975 | 20 m | The State Bureau of Surveying and Mapping | Finite-element mesh generation |
Soil data | 1960–1962 | Plot scale | Data Sharing Infrastructure of Loess Plateau [29] | Model parameterization |
Flood events | 1959–1969 | 5 min to 1 h | Data Sharing Infrastructure of Loess Plateau [29] | Model calibration |
Precipitation | 1959–1969 | 5 min to 1 h | Data Sharing Infrastructure of Loess Plateau [29] | Model calibration |
Land use types | 1975, 1986, 2006 | 30 m | Data Sharing Infrastructure of Loess Plateau [30] | Model parameterization |
Check dam information | 1978, 1993, 2001 | Check dam survey of Chabagou watershed | Model parameterization |
Scenario Number | Number of Filled Check Dams | Size Combination | Total Area of Sedimentary Lands (×104 m2) | Main Feature of the Scenario |
---|---|---|---|---|
0 | 0 | (0,0) | 0 | No check dam in the catchment |
1 | 1 | (1,0) | 4.69 | One large check dam downstream |
2 | 2 | (2,0) | 11.21 | Two large check dams connected |
3 | 2 | (1,1) | 5.93 | Two check dams with different sizes |
4 | 3 | (2,1) | 12.45 | Three check dams with different sizes |
5 | 4 | (1,3) | 9.00 | One large check dam on main the channel and targeted treatment to erosion-prone gully |
6 | 4 | (2,2) | 14.18 | Two large check dams on main the channel and targeted treatment to erosion-prone gullies |
7 | 4 | (2,2) | 8.92 | Current deployment strategy |
Soil Types | Ksat a (m s−1) | Porosity (-) | α b (m−1) | n c (-) | Sr d (-) |
---|---|---|---|---|---|
SJG-soil (0–0.5 m) | 2.90 × 10−6 | 0.42 | 1.38 | 1.74 | 0.08 |
SJG-soil (below 0.5 m) | 2.70 × 10−6 | 0.40 | 1.35 | 1.83 | 0.11 |
Check dam | 4.00 × 10−10 | 0.35 | 1.52 | 1.29 | 0.04 |
Sedimentary land | 4.00 × 10−6 | 0.45 | 0.37 | 1.19 | 0.13 |
Bedrock | 1.00 × 10−9 | 0.20 | 4.30 | 1.25 | 0.08 |
Parameter source | Calibration | The Zizhou Experimental Station |
Surface Zone a | Hydrologic Response | Sediment Transport | |||||||
---|---|---|---|---|---|---|---|---|---|
n a (s m−1/3) | ψimb (m) | Ssr c (-) | Ht d (m) | cd e (m−1) | b f (-) | ξ g (-) | cf h (s m−1)0.6 | φ i (m−1) | |
Hillslope | 0.010 | 0.0015 | 0.01 | 0.0015 | 600 | 1.6 | 0.25 | 50.00 | 0.005 |
Gully and Channel | 0.008 | 50.00 | 0.005 | ||||||
Sedimentary Land | 0.008 | 0.05 | 0.001 | ||||||
Check Dam | 0.004 | 5.00 | 0.001 | ||||||
Parameter Source | Calibration | Literature | Calibration |
Scenario | Qp (m3 s−1) | Reduction of Qp (%) | Tp (s) | Qv (m3) | Reduction of Qv (%) | Runoff Coefficient (%) |
---|---|---|---|---|---|---|
Scenario-0 | 34.85 | - | 7300 | 58,984.10 | - | 15.38 |
Scenario-1 | 24.21 | 30.53 | 7512 | 56,768.51 | 3.76 | 14.81 |
Scenario-2 | 8.06 | 76.87 | 11,300 | 52,481.28 | 11.02 | 13.69 |
Scenario-3 | 18.04 | 48.24 | 7548 | 55,854.77 | 5.31 | 14.57 |
Scenario-4 | 4.04 | 88.41 | 13,300 | 50,505.12 | 14.38 | 13.17 |
Scenario-5 | 10.76 | 69.12 | 7520 | 53,163.99 | 9.87 | 13.87 |
Scenario-6 | 2.32 | 93.34 | 15,800 | 38,871.10 | 34.10 | 10.14 |
Scenario-7 | 9.95 | 71.45 | 8950 | 47,187.28 | 20.00 | 12.31 |
Scenario | Qs,p (kg s−1) | Reduction of Qs,p (%) | SY (×104 t) | Reduction of SY (%) | ES (×104 t) | Reduction of ES (%) | SDR (%) |
---|---|---|---|---|---|---|---|
Scenario-0 | 21,932.03 | - | 3.82 | - | 4.08 | - | 93.56 |
Scenario-1 | 16,508.84 | 24.73 | 3.66 | 4.14 | 3.99 | 2.18 | 91.78 |
Scenario-2 | 4232.80 | 80.70 | 3.53 | 7.55 | 3.71 | 8.98 | 95.12 |
Scenario-3 | 11,432.89 | 47.87 | 3.55 | 6.96 | 3.97 | 2.60 | 89.45 |
Scenario-4 | 2103.80 | 90.41 | 2.47 | 35.23 | 3.56 | 12.78 | 69.54 |
Scenario-5 | 7144.15 | 67.43 | 3.21 | 16.03 | 3.90 | 4.48 | 82.32 |
Scenario-6 | 1184.30 | 94.60 | 1.83 | 52.09 | 3.43 | 15.98 | 53.41 |
Scenario-7 | 8986.66 | 59.02 | 3.44 | 9.90 | 3.61 | 11.38 | 95.21 |
Scenario Number a | Performance Ranking | ||||||
---|---|---|---|---|---|---|---|
(1) b | (2) | (3) | (4) | (5) | (6) | (7) b | |
Reduction of Qp | 6 | 4 | 2 | 7 | 5 | 3 | 1 |
Reduction of Qv | 6 | 7 | 4 | 2 | 5 | 3 | 1 |
Reduction of Qs,p | 6 | 4 | 2 | 5 | 7 | 3 | 1 |
Reduction of SY | 6 | 4 | 5 | 7 | 2 | 3 | 1 |
Reduction of ES | 6 | 4 | 7 | 2 | 5 | 3 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Pan, H.; Ran, Q. Impacts of Filled Check Dams with Different Deployment Strategies on the Flood and Sediment Transport Processes in a Loess Plateau Catchment. Water 2020, 12, 1319. https://doi.org/10.3390/w12051319
Tang H, Pan H, Ran Q. Impacts of Filled Check Dams with Different Deployment Strategies on the Flood and Sediment Transport Processes in a Loess Plateau Catchment. Water. 2020; 12(5):1319. https://doi.org/10.3390/w12051319
Chicago/Turabian StyleTang, Honglei, Hailong Pan, and Qihua Ran. 2020. "Impacts of Filled Check Dams with Different Deployment Strategies on the Flood and Sediment Transport Processes in a Loess Plateau Catchment" Water 12, no. 5: 1319. https://doi.org/10.3390/w12051319
APA StyleTang, H., Pan, H., & Ran, Q. (2020). Impacts of Filled Check Dams with Different Deployment Strategies on the Flood and Sediment Transport Processes in a Loess Plateau Catchment. Water, 12(5), 1319. https://doi.org/10.3390/w12051319