Improved Principal Component-Fuzzy Comprehensive Assessment Coupling Model for Urban River Water Quality: A Case Study in Chongqing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Monitor and Sample Collection
2.3. Methods
2.3.1. Principal Component Analysis
2.3.2. Fuzzy Comprehensive Assessment Method
3. Results
3.1. Choice of Key Indexes
3.2. Comprehensive Score of Pollution Degree
3.3. Determination of the Water Quality Class
4. Discussion
4.1. Comparison of the Two Methods
4.2. Spatial Analysis of Water Quality
4.3. Suggestions for Improving Water Quality
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tian, R.; Xue, C.; Wu, J. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ. Sci. Pollut. Res. Int. 2017, 24, 13224–13234. [Google Scholar] [CrossRef] [PubMed]
- Mena-Rivera, L.; Salgado-Silva, V.; Benavides-Benavides, C.; Coto-Campos, J.M.; Swinscoe, T.H. Spatial and seasonal surface water quality assessment in a tropical urban catchment: Burío River, Costa Rica. Water 2017, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Duan, M.; Du, X.; Peng, W.; Zhang, S.; Yan, L. A revised method of surface water quality evaluation based on background values and its application to samples collected in Heilongjiang Province, China. Water 2019, 11, 1057. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zou, Z.; An, Y. Water quality assessment in Qu River based on fuzzy water pollution index method. J. Environ. Sci. 2016, 50, 87–92. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Zou, X.; Wu, L. Comparison of source water quality standards and evaluation methods between China and some developed countries. J. Clim. Ins. Water Res. Hydrol. Res. 2013, 11, 176–182. [Google Scholar]
- Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef]
- Du, P.; Lei, X.; Jing, W. Study on GIS based geological environment single factor assessment method. Coal Geol. China 2012, 24, 42–46. [Google Scholar]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Brookes, J.D.; Yan, W.; Ji, X.; Feng, J. Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. Sci. Total Environ. 2019, 650, 1554–1565. [Google Scholar] [CrossRef]
- Wang, T.; Xu, S.; Liu, J. Dynamic assessment of comprehensive water quality considering the release of sediment pollution. Water 2017, 9, 275. [Google Scholar] [CrossRef]
- Shen, G.; Lu, Y.; Wang, M.; Sun, Y. Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu Lake region of China. J. Environ. Manag. 2005, 76, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Huang, F.; Wang, X.; Lou, L.; Zhou, Z.; Wu, J. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Res. 2010, 44, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, Y.; Wang, H.; Li, F. Gray water footprint: Taking quality, quantity, and time effect into consideration. Water Resour. Manag. 2014, 28, 3871–3874. [Google Scholar] [CrossRef]
- Zou, Q.; Zhou, J.; Zhou, C.; Song, L.; Guo, J. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2013, 27, 525–546. [Google Scholar] [CrossRef]
- Zieliński, M.; Szczucińska, A.; Drożdżyński, M.; Frankowski, M.; Pukacz, A. Water quality assessment of a meromictic lake based on physicochemical parameters and strontium Isotopes (87Sr/86Sr) analysis: A case study of Lubińskie Lake (Western Poland). Water 2019, 11, 2231. [Google Scholar] [CrossRef] [Green Version]
- Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Varzandeh, M.H.M. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J.; An, X.; Zhang, Y.; Yang, L. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China. Expert Syst. Appl. 2010, 37, 2517–2521. [Google Scholar] [CrossRef]
- Benkhaldoun, F.; Elmahi, I.; Seaı, M. Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes. J. Comput. Phys. 2007, 226, 180–203. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Abuduwaili, J.; Li, Y.; Mu, S. Hydrochemical characteristics and water quality assessment for the upper reaches of Syr Darya River in Aral Sea Basin, Central Asia. Water 2019, 11, 1893. [Google Scholar] [CrossRef] [Green Version]
- Kubilay, A.; Neophytou, M.-A.; Matsentides, S.; Loizou, M.; Carmeliet, J. The pollutant removal capacity of urban street canyons as quantified by the pollutant exchange velocity. Urban Clim. 2017, 21, 136–153. [Google Scholar] [CrossRef]
- Federation, W.E.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Sun, Y.; Zhou, Q.; Xie, X.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Luo, Y.; Yang, Y.; Zhao, L.; Zhou, X. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality-A case study of Dianchi Lake. Sci. Total Environ. 2018, 624, 859–871. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Ma, H.M.; Song, Q.W.; Zhang, Y. Assessment of water quality using grey relational analysis and principal component analysis. Adv. Mater. Res. 2011, 255, 2829–2835. [Google Scholar] [CrossRef]
- Zong, Y.; Huang, D.; Zhang, Y.; Lu, G. Research on comprehensive evaluation of drinking water source based on two principal component analysis for water body classification and time-space comparability. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 062025. [Google Scholar] [CrossRef]
- Akan, A.O. Open Channel Hydraulics; Elsevier: New York, NY, USA, 2011. [Google Scholar]
- Cao, S.-H.; Zhang, Q.-H.; Mao, W.-B.; Jiang, L.; Zhai, X.-T. The Calculation of Non-silting Velocity for Pipes Carrying Water in the Lower Yellow River Irrigation Areas. J. Irrig. Drain. 2013, 32, 106–109. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Q. Hydraulics; Beijing Institute of Technology Press: Beijing, China, 2018; p. 220. [Google Scholar]
- Northwest Shaanxi Institute of Water Resources Science. Channel Sediment and Channel Design; Shaanxi People’s Publishing House: Xi’an, China, 1959. [Google Scholar]
Monitoring Points | Depth Ratio | Water Depth (m) | Temperature (°C) | DO (mg/L) | Conductivity (µS/cm) | PH | Velocity (m/s) | CODcr (mg/L) | NH3-N (mg/L) | TP (mg/L) | TN (mg/L) | SS (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 0.85 | 0.44 | 14.2 | 5.16 | 775.55 | 8.03 | 0.02 | 33.87 | 8.49 | 0.83 | 15.54 | 11.02 |
F2 | 0.45 | 0.17 | 14.13 | 5.8 | 780.54 | 8.01 | 0.33 | 56.65 | 17.6 | 1.43 | 28.59 | 15.25 |
F3 | 0.74 | 0.03 | 15.46 | 3.73 | 783.36 | 7.74 | 0.98 | 45.63 | 7.25 | 1.92 | 10.57 | 6.81 |
Q1 | 1 | 2.03 | 12.59 | 7.39 | 391.9 | 8.1 | 0.02 | 19.01 | 0.54 | 0.07 | 1.88 | 2.86 |
Q2 | 1 | 0.48 | 14.1 | 5.77 | 886.23 | 7.88 | 0.03 | 31.11 | 7.32 | 0.7 | 16 | 5.41 |
Q3 | 0.78 | 0.2 | 15.08 | 4.44 | 947.67 | 7.87 | 0.1 | 23.3 | 8.72 | 0.7 | 18.13 | 4.62 |
Q4 | 1 | 0.12 | 14.79 | 4.32 | 923.14 | 7.87 | 0.57 | 27.04 | 9.71 | 0.59 | 16.53 | 4.96 |
Q5 | 1 | 0.35 | 16.01 | 4.61 | 1047.57 | 7.82 | 0.56 | 25 | 10.57 | 0.56 | 18.88 | 17.49 |
Q6 | 1 | 0.22 | 12.86 | 6.59 | 640.14 | 7.83 | 0.21 | 22.66 | 15.24 | 0.93 | 20.5 | 11.06 |
Q7 | 0.98 | 0.18 | 13.02 | 3.87 | 684.33 | 8.07 | 0.35 | 43.7 | 13 | 0.86 | 23.5 | 149.93 |
Q8 | 0.66 | 0.33 | 11.73 | 7.9 | 858.57 | 7.91 | 0.24 | 39.9 | 4.47 | 0.79 | 12.15 | 66.89 |
Z1 | 0.29 | 0.02 | 12.59 | 5.31 | 788.29 | 8 | 0.2 | 47.81 | 27.17 | 1 | 36.14 | 6.38 |
Z2 | 0.9 | 0.11 | 13.4 | 4.8 | 788.86 | 7.88 | 0.35 | 130.1 | 26.3 | 1.85 | 37.9 | 43.79 |
Z3 | 1 | 0.77 | 17.52 | 6.79 | 823.28 | 8.09 | 0.14 | 270.91 | 38.93 | 2.25 | 45.96 | 238.15 |
Z4 | 0.81 | 0.06 | 13.67 | 7.54 | 756.71 | 7.99 | 0.17 | 35.9 | 1.1 | 0.24 | 3.56 | 7.83 |
Z5 | 0.93 | 0.15 | 13.68 | 7.34 | 678.81 | 8.08 | 0.14 | 28.2 | 1.24 | 0.25 | 1.98 | 6 |
Z6 | 0.83 | 0.04 | 12.6 | 3.47 | 697.43 | 7.8 | 0.69 | 129.63 | 17.84 | 1.33 | 29.15 | 2.54 |
MonitoringPoint | Bottom Width (m) | Water Depth(m) | Cross-Sectional Area(m2) | Wetted Perimeter (m) | Hydraulic Radius (m) | Non-Scouring Velocity (m/s) | Non-Slushing Velocity (m/s) |
---|---|---|---|---|---|---|---|
Q8 | 4.00 | 0.33 | 1.31 | 4.65 | 0.28 | 0.93 | 0.27 |
Q7 | 3.80 | 0.18 | 0.68 | 4.16 | 0.16 | 0.75 | 0.20 |
Q6 | 5.80 | 0.22 | 1.30 | 6.25 | 0.21 | 0.82 | 0.23 |
Q5 | 3.20 | 0.35 | 1.11 | 3.89 | 0.29 | 0.93 | 0.27 |
Q4 | 6.80 | 0.12 | 0.81 | 7.04 | 0.11 | 0.65 | 0.17 |
Q3 | 10.60 | 0.20 | 2.10 | 11.00 | 0.19 | 0.79 | 0.22 |
Q2 | 19.50 | 0.48 | 9.31 | 20.45 | 0.46 | 1.12 | 0.34 |
Q1 | 16.90 | 2.03 | 40.46 | 24.21 | 1.67 | 1.89 | 0.26 |
Z6 | 2.40 | 0.04 | 0.10 | 2.48 | 0.04 | 0.42 | 0.16 |
Z5 | 1.90 | 0.15 | 0.28 | 2.20 | 0.13 | 0.68 | 0.18 |
Z4 | 4.50 | 0.06 | 0.28 | 4.63 | 0.06 | 0.50 | 0.17 |
Z3 | 16.50 | 0.77 | 12.70 | 18.04 | 0.70 | 1.34 | 0.42 |
Z1 | 6.00 | 0.02 | 0.09 | 6.03 | 0.02 | 0.29 | 0.16 |
Z2 | 1.20 | 0.11 | 0.13 | 1.42 | 0.09 | 0.60 | 0.15 |
F3 | 3.00 | 0.03 | 0.08 | 3.05 | 0.03 | 0.36 | 0.15 |
F2 | 2.50 | 0.17 | 0.42 | 2.83 | 0.15 | 0.71 | 0.19 |
F1 | 5.20 | 0.44 | 2.27 | 6.07 | 0.37 | 1.04 | 0.31 |
Index | I | II | III | IV | V | Bad V |
---|---|---|---|---|---|---|
PH | 6–9 | ≤6, ≥9 | ||||
Velocity(m/s) | between non-scouring and non-silting velocity | ≥non-scouring velocity≤non-silting velocity | ||||
DO (mg/L) | ≥7.5 | 6–7.5 | 5–6 | 3–5 | 2–3 | ≤2 |
CODcr (mg/L) | ≤15 | ≤15 | 15–20 | 20–30 | 30–40 | ≥40 |
NH3-N (mg/L) | ≤0.15 | 0.15–0.5 | 0.5–1.0 | 1.0–1.5 | 1.5 –2.0 | ≥2.0 |
TN (mg/L) | ≤0.2 | 0.2–0.5 | 0.5–1 | 1.0–1.5 | 1.5–2.0 | ≥2.5 |
TP (mg/L) | ≤0.02 | 0.02–0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 | ≥0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Chen, J.; Jin, Q.; Liu, H.; Yang, W.; Li, W.; Jiang, J.; Sha, Y.; Tian, Z.; Wang, Y.; et al. Improved Principal Component-Fuzzy Comprehensive Assessment Coupling Model for Urban River Water Quality: A Case Study in Chongqing, China. Water 2020, 12, 1375. https://doi.org/10.3390/w12051375
Zhao S, Chen J, Jin Q, Liu H, Yang W, Li W, Jiang J, Sha Y, Tian Z, Wang Y, et al. Improved Principal Component-Fuzzy Comprehensive Assessment Coupling Model for Urban River Water Quality: A Case Study in Chongqing, China. Water. 2020; 12(5):1375. https://doi.org/10.3390/w12051375
Chicago/Turabian StyleZhao, Siyuan, Jing Chen, Qiu Jin, Huazu Liu, Wei Yang, Wei Li, Jiao Jiang, Yue Sha, Zhenyu Tian, Yixin Wang, and et al. 2020. "Improved Principal Component-Fuzzy Comprehensive Assessment Coupling Model for Urban River Water Quality: A Case Study in Chongqing, China" Water 12, no. 5: 1375. https://doi.org/10.3390/w12051375
APA StyleZhao, S., Chen, J., Jin, Q., Liu, H., Yang, W., Li, W., Jiang, J., Sha, Y., Tian, Z., Wang, Y., & Li, X. (2020). Improved Principal Component-Fuzzy Comprehensive Assessment Coupling Model for Urban River Water Quality: A Case Study in Chongqing, China. Water, 12(5), 1375. https://doi.org/10.3390/w12051375