Pharmaceuticals Load in the Svihov Water Reservoir (Czech Republic) and Impacts on Quality of Treated Drinking Water
Abstract
:1. Introduction
1.1. Work Scope and Objectives
1.2. Current Situation
2. Materials and Methods
2.1. Svihov Water Reservoir
2.2. Monitoring Methodology 2017–2018
2.3. Additional Monitoring in 2019
2.4. Laboratory Work Methodology
2.5. Processing of Chemical Analysis Results
3. Results
3.1. Monitoring 2017–2018
3.1.1. Hnevkovice Profile
3.1.2. Dolni Kralovice Profile
3.1.3. Miletin Profile
3.1.4. Kacerov Profile
3.1.5. Raw and Drinking Water Monitoring
3.2. Additional Monitoring Hnevkovice
4. Discussion
4.1. Discussion of 2017–2018 Monitoring Results
4.2. Discussion of Addittional 2019 Wastewater Moitoring—Hnevkovice
4.3. Raw Water
4.4. Treated Drinking Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferrer, I.; Thurman, E.M. Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2012, 1259, 148–157. [Google Scholar] [CrossRef]
- Richardson, S.D. Environmental mass spectrometry: Emerging contaminants and current issues. In Analytical Chemistry; American Chemical Society: Washington, DC, USA, 2006; Volume 78, pp. 4021–4045. [Google Scholar] [CrossRef]
- European Commission. Communication from the Comission to the European Parliament, the Council and the European Economic and Social Committee. European Union Strategic Approach to Pharmaceuticals in the Environment. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1582731822045&uri=CELEX:52019DC0128 (accessed on 25 February 2020).
- Kvítek, T. Retence a jakost vody v povodí vodárenské nádrže Švihov na Želivce: Význam retence vody na zemědělském půdním fondu pro jakost vody a současně i průvodce vodním režimem krystalinika. Water retention and water quality in the catchment area of the Svihov water reservoir on the Zelivka river: Importance of Water Retention on Agricultural Land for Water Quality and at the Same Time a Guide to Water Regime of Crystalline Complex. Povodí Vltavy. 2017. Available online: https://books.google.cz/books/about/Retence_a_jakost_vody_v_povodí_vodáren.html?id=K-CStQEACAAJ&redir_esc=y (accessed on 25 February 2020). (In Czech).
- Hrkal, Z.; Eckhardt, P.; Hrabánková, A.; Novotná, E.; Rozman, D. PPCP Monitoring in Drinking Water Supply Systems: The Example of Káraný Waterworks in Central Bohemia. Water 2018, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Snyder, S.A. Occurrence of Pharmaceuticals in U.S. Drinking Water. ACS Symp. Ser. 2010, 1048, 69–80. [Google Scholar] [CrossRef]
- World Health Organization. WHO/HSE/WSH/11.05, Pharmaceuticals in Drinking Water. 2011. Available online: http://www.who.int/water_sanitation_health/publications/2011/pharmaceuticals/en (accessed on 25 February 2020).
- World Health Organization. Pharmaceuticals in Drinking-Water; World Health Organization: Geneva, Switzerland, 2012; Available online: https://www.who.int/water_sanitation_health/publications/2012/pharmaceuticals/en/ (accessed on 24 February 2020).
- Jones, O.A.; Lester, J.N.; Voulvoulis, N.; Voulvoulis, N. Pharmaceuticals: A threat to drinking water? Trends Biotechnol. 2005, 23, 163–167. [Google Scholar] [CrossRef]
- Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007, 377, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment—A review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Bexfield, L.M.; Toccalino, P.L.; Belitz, K.; Foreman, W.T.; Furlong, E.T. Hormones and Pharmaceuticals in Groundwater Used As a Source of Drinking Water Across the United States. Environ. Sci. Technol. 2019, 53, 2950–2960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozman, D.; Hrkal, Z.; Eckhardt, P.; Novotná, E.; Boukalova, Z. Pharmaceuticals in groundwaters: A case study of the psychiatric hospital at Horní Beřkovice, Czech Republic. Environ. Earth Sci. 2014, 73, 3775–3784. [Google Scholar] [CrossRef]
- Rozman, D.; Hrkal, Z.; Váňa, M.; Vymazal, J.; Boukalová, Z. Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic. Water 2017, 9, 218. [Google Scholar] [CrossRef]
- Battaglin, W.A.; Bradley, P.M.; Iwanowicz, L.R.; Journey, C.A.; Walsh, H.L.; Blazer, V.S. Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012–2013. Sci. Total Environ. 2018, 643, 651–673. [Google Scholar] [CrossRef]
- Chen, Y.; Vymazal, J.; Březinová, T.; Koželuh, M.; Kule, L.; Huang, J.; Chen, Z. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci. Total Environ. 2016, 566, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Březinová, T.D. Removal of saccharin from municipal sewage: The first results from constructed wetlands. Chem. Eng. J. 2016, 306, 1067–1070. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T.D.; Koželuh, M.; Kule, L. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic—The first year of monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
- Lubliner, B.; Redding, M.; Ragsdale, D. Pharmaceuticals and Personal Care Products in Municipal Wastewater and Their Removal by Nutrient Treatment Technologies. Washington State Department of Ecology, Olympia, WA, USA Publication Number 10-03-004. Available online: https://fortress.wa.gov/ecy/publications/documents/1003004.pdf (accessed on 25 February 2020).
- Tauxe-Wuersch, A.; De Alencastro, L.; Grandjean, D.; Tarradellas, J. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res. 2005, 39, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef]
- Rodriguez, E.; Campinas, M.; Acero, J.L.; Rosa, M.J. Investigating PPCP Removal from Wastewater by Powdered Activated Carbon/Ultrafiltration. Water Air Soil Pollut. 2016, 227, 1–14. [Google Scholar] [CrossRef]
- Jobling, S.; Williams, R.; Johnson, A.; Taylor, A.; Gross-Sorokin, M.; Nolan, M.; Tyler, C.R.; Van Aerle, R.; Santos, E.M.; Brighty, G. Predicted Exposures to Steroid Estrogens in U.K. Rivers Correlate with Widespread Sexual Disruption in Wild Fish Populations. Environ. Health Perspect. 2005, 114, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Kostich, M.S.; Lazorchak, J. Risks to aquatic organisms posed by human pharmaceutical use. Sci. Total Environ. 2008, 389, 329–339. [Google Scholar] [CrossRef]
- Standley, L.J.; Rudel, R.A.; Swartz, C.H.; Attfield, K.R.; Christian, J.; Erickson, M.; Brody, J.G. Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environ. Toxicol. Chem. 2008, 27, 2457–2468. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Nakamura, Y.; Moriguchi, S.; Nakamura, Y.; Honda, Y.; Tamura, I.; Hirata, Y.; Hayashi, A.; Sekizawa, J. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. Water Res. 2009, 43, 351–362. [Google Scholar] [CrossRef]
- Kase, R. Stoffdatenblattentwurf für Carbamazepin (Stand 15/02/2010; update 30/04/2010). Erhältlich bei: Oekotoxzentrum, Zentrum für angewandte Ökotoxikologie, EAWAG (2013). Vorschläge für akute und chronische Qualitätskriterien für ausgewählte schweizrelevante Substanzen. Available online: http://www.oekotoxzentrum.ch/expertenservice/qualitaetskriterien/vorschlaege (accessed on 25 February 2020).
- RIVM. Environmental Risk Limits for Pharmaceuticals: Derivation of WFD Water Quality Standards for Carbamazepine, Metoprolol, Metformin and Amidotrizoic Acid; RIVM Letter Report 270006002/2014; RIVM: Bilthoven, The Netherlands, 2014. [Google Scholar]
- Directive 2008/105/ec of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/eec, 83/513/eec, 84/156/eec, 84/491/eec, 86/280/eec and Amending Directive 2000/60/ec of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008L0105 (accessed on 25 February 2020).
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF (accessed on 25 February 2020).
- Marsland, T.; Roy, S. “Groundwater Watch List: Pharmaceuticals Pilot Study. Monitoring Data Collection and Initial Analysis. For European Commission—And CIS Groundwater Working Group (WGGW)”, Amec Foster Wheeler Associate, Shrewsbury. Available online: http://www.vlakwa.be/fileadmin/user_upload/20160629-File3-1600204_Pharm_Pilot_Study_GRW.doc (accessed on 25 February 2020).
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018D0840 (accessed on 25 February 2020).
- Wirtz, F. Danube, Meuse and Rhine MEMORANDUM 2008. Environ. Sci. Pollut. Res. 2009, 16, 112–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyhláška, Č. 252/2004 Sb., kterou se stanoví hygienické požadavky na pitnou a teplou vodu a četnost a rozsah kontroly pitné vody. Decree No. 252/2004 Coll. about hygiene requirements for drinking and hot water and frequency and scope of drinking water control. In Zákony pro lidi.cz. Available online: https://www.zakonyprolidi.cz/cs/2004-25 (accessed on 25 February 2020). (In Czech).
- Povodí Vltavy. State Enterprise Online. Available online: www.pvl.cz (accessed on 25 February 2020).
- Morteani, G.; Möller, P.; Fuganti, A.; Paces, T. Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environ. Geochem. Health 2006, 28, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Swartz, C.H.; Reddy, S.; Benotti, M.J.; Yin, H.; Barber, L.B.; Brownawell, B.J.; Rudel, R.A. Steroid Estrogens, Nonylphenol Ethoxylate Metabolites, and Other Wastewater Contaminants in Groundwater Affected by a Residential Septic System on Cape Cod, MA. Environ. Sci. Technol. 2006, 40, 4894–4902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozisek, F.; Pomykacova, I.; Jeligova, H.; Cadek, V.; Svobodova, V. Survey of human pharmaceuticals in drinking water in the Czech Republic. J. Water Health 2013, 11, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Datel, J.; Hartlová, L.; Hrabánková, A.; Pistora, Z.; Kucera, J.; Novotná, J.; Pastuszek, F. Methodology for Comprehensive Management of Small Water Resources to Ensure Optimal Quality of Drinking Water in Normal and Emergency Situations. Available online: http://mistni-zdroje.vuv.cz (accessed on 25 February 2020). (In Czech).
- Solinst Canada Ltd. Available online: www.solinst.com (accessed on 25 February 2020).
- Czech Hydrometeorological Institute Online. Available online: www.chmi.cz (accessed on 25 February 2020).
- Datel, J.V.; Hrabánková, A.; Hrkal, Z. Pharmaceuticals in the Drinking Water Reservoir Svihov, Czech Republic, Abstract Proceedings 15th Specialized Conference Small Water & Wastewater Systems; Technion- Israel Institute of Technology: Haifa, Izrael, 2018; ISBN 050-5288969. pp. 124–125. Available online: https://swws2018.net.technion.ac.il (accessed on 15 April 2019).
- Datel, J.V.; Hrabánková, A.; Hrkal, Z. Occurrence of Pharmaceuticals in the Drinking Water Resources for Prague, Czech Republic, Abstract Proceedings 15th Hydrogeológia—Vzdelávanie, Veda a Prax, Slovenská Asociácia Hydrogeológov; Kúpele Nimnica: kúpele, Slovakia, 2018; ISBN 978-80-972651-1-3. pp. 60–61. Available online: http://www.sah-podzemnavoda.sk/cms/page.php?7 (accessed on 25 February 2020). (In Czech)
- Úpravna vody Želivka (Želivka Drinking Water Treatment Plant). Zelivska provozni, a.s. Available online: www.zelivska.cz (accessed on 10 April 2020).
- LEPKA, J. K padesátému výročí zahájení výstavby souboru staveb vodního díla Želivka, On the occasion of the fiftieth anniversary of the commencement of the construction of the Želivka waterworks, 08/15, Journal Stavebnictví, Expodata Brno. Časopis Stavebnictví, Expodata Brno. Available online: https://www.casopisstavebnictvi.cz/k-padesatemu-vyroci-zahajeni-vystavby-souboru-staveb-vodniho-dila-zelivka_N5474 (accessed on 25 February 2020). (In Czech).
Analyzed Constituent | Detection Limit (ng/dm3) | Analysis Uncertainty (%) | Use |
---|---|---|---|
17a-ethynilestradiol | 2 | 35 | hormone |
17-alpha-estradiol | 1 | 35 | hormone |
17-beta-estradiol | 1 | 35 | hormone |
Acebutolol | 10 | 35 | beta blocker |
Acesulfame | 50 | 35 | sweetener |
Alfuzosin | 10 | 35 | beta blocker |
Atenolol | 10 | 30 | beta blocker |
Azithromycin | 10 | 35 | antibiotic |
Bezafibrate | 10 | 35 | fibrate |
Bisoprolol | 10 | 35 | beta blocker |
Bisphenol A | 50 | 35 | plastics production |
Bisphenol B | 50 | 35 | plastics production |
Bisphenol S | 50 | 35 | plastics production |
Caffeine | 100 | 45 | stimulant |
Carbamazepine | 10 | 30 | antiepileptic |
Carbamazepine-2-hydr. | 10 | 35 | carbamazepine metabolite |
Carbamazepine-DH | 10 | 40 | carbamazepine metabolite |
Carbamazepine-DHH | 10 | 40 | carbamazepine metabolite |
Carbamazepine-E | 10 | 40 | carbamazepine metabolite |
Celiprolol | 10 | 35 | beta blocker |
Chloramphenicol | 20 | 35 | antibiotic |
Ciprofloxacin | 20 | 35 | antibiotic |
Citalopram | 20 | 35 | antidepressant |
Clarithromycin | 10 | 35 | antibiotic |
Clindamycin | 10 | 35 | antibiotic |
Clofibric acid | 10 | 35 | clofibrate metabolite |
Cotinine | 20 | 35 | stimulant |
Cyclophosphamide | 10 | 35 | cancer chemotherapy |
Diatrizoate | 50 | 35 | contrast medium |
Diclofenac | 20 | 30 | NSAID (non-steroidal anti-inflammatory) |
Diclofenac-4-hydroxy | 20 | 40 | diclofenac metabolite |
Diltiazem | 10 | 35 | vasodilator |
Doxycycline | 50 | 35 | antibiotic |
Enrofloxacin | 20 | 35 | antibiotic |
Erythromycin | 10 | 30 | antibiotic |
Estriol | 10 | 35 | hormone |
Estrone | 1 | 35 | hormone |
Fexofenadine | 10 | 35 | antihistaminic |
Fluconazole | 10 | 35 | fungicide |
Fluoxetine | 10 | 35 | antidepressant |
Furosemide | 50 | 35 | diuretic |
Gabapentin | 10 | 35 | sedative |
Gemfibrozil | 10 | 35 | fibrate |
Hydrochlorothiazide | 50 | 35 | diuretic |
Ibuprofen | 20 | 35 | NSAID |
Ibuprofen-2-hydroxy | 30 | 40 | ibuprofen metabolite |
Ibuprofen-carboxy | 20 | 40 | ibuprofen metabolite |
Iohexol | 50 | 35 | contrast medium |
Iomeprol | 50 | 35 | contrast medium |
Iopamidol | 50 | 35 | contrast medium |
Iopromide | 50 | 30 | contrast medium |
Irbesartan | 10 | 35 | treatment of hypertension |
Ivermectin | 50 | 35 | antiparasitic |
Ketoprofen | 10 | 35 | NSAID |
Lamotrigine | 10 | 35 | anticonvulsant drug |
Lovastatin | 10 | 35 | statin drug |
Memantine | 20 | 35 | Alzheimer’s disease medication |
Metoprolol | 10 | 30 | beta blocker |
Mirtazapine | 10 | 35 | antidepressant |
Naproxen | 50 | 30 | NSAID |
Naproxen-O-desmeth. | 20 | 40 | naproxen metabolite |
Norfloxacin | 20 | 35 | antibiotic |
Ofloxacin | 20 | 35 | antibiotic |
Oxcarbazepine | 10 | 40 | anticonvulsant drug |
Oxypurinol | 50 | 35 | treatment of hyperuricemia |
Paracetamol | 10 | 35 | painkiller |
Paraxanthine | 100 | 35 | psychoactive stimulator |
Penicillin G | 10 | 30 | antibiotic |
Phenazone | 10 | 35 | NSAID |
Primidone | 10 | 35 | anticonvulsant drug |
Progesterone | 0.5 | 35 | hormone |
Propranolol | 10 | 35 | beta blocker |
Propyphenazone | 10 | 35 | NSAID |
Ranitidine | 10 | 35 | gastric acidity treatment |
Roxithromycin | 10 | 35 | antibiotic |
Saccharin | 50 | 35 | sweetener |
Sertraline | 10 | 35 | antidepressant |
Simvastatin | 10 | 35 | statin drug |
Sotalol | 10 | 35 | beta blocker |
Sulfamerazine | 10 | 35 | antibiotic |
Sulfamethazine | 10 | 35 | antibiotic |
Sulfamethoxazole | 10 | 30 | antibiotic |
Sulfanilamide | 50 | 35 | antibiotic |
Sulfapyridine | 10 | 35 | antibiotic |
Telmisartan | 20 | 35 | treatment of hypertension |
Testosterone | 0.5 | 35 | hormone |
Tiamulin | 10 | 35 | antibiotic |
Tramadol | 10 | 35 | painkiller |
Triclocarban | 10 | 35 | antimicrobial drug |
Triclosan | 20 | 30 | antimicrobial drug |
Trimethoprim | 10 | 30 | antibiotic |
Valsartan | 10 | 35 | treatment of hypertension |
Venlafaxine | 10 | 35 | antidepressant |
Warfarin | 10 | 30 | blood anticoagulant |
Analyzed Constituent | Detection Limit (ng/dm3) | Analysis Uncertainty (%) | Use |
---|---|---|---|
4-formylaminoantipyrine | 10 | 35 | antibiotic |
Atorvastatin | 10 | 35 | statin drug |
Benzotriazole | 20 | 35 | anticorrosive and deicing products |
Benzotriazole methyl | 20 | 35 | anticorrosive and deicing products |
Bisoprolol | 10 | 35 | beta blocker |
Butylparaben | 10 | 35 | antimicrobial drug |
Climbazole | 10 | 35 | fungicide |
Cyclamate | 100 | 35 | sweetener |
DEET (diethyltoluamide) | 10 | 30 | insect repellent |
Ethylparaben | 10 | 35 | antimicrobial drug |
Metformin | 20 | 40 | diabetes medicine |
Methylparaben | 30 | 35 | fungicide |
Norverapamil | 10 | 35 | verapamil metabolite |
OMC (ethylhexyl methoxycinnamate) | 1000 | 35 | cosmetics (hair spray, sunscreen) |
Propylparaben | 20 | 35 | antimicrobial drug |
Salbutamol | 10 | 35 | asthma treatment |
Sucralose | 1000 | 35 | sweetener |
Valsartan acid | 10 | 35 | valsartan metabolite |
Verapamil | 10 | 35 | treatment of hypertension |
Substance | Number of Samples | Detection Limit (ng/dm3) | Number of Samples below Detection Limit |
---|---|---|---|
Acesulfame | 16 | 50 | 0 |
Diclofenac | 28 | 20 | 2 |
Gabapentin | 28 | 10 | 2 |
Hydrochlorothiazide | 28 | 50 | 0 |
Ibuprofen | 28 | 20 | 2 |
Metoprolol | 28 | 10 | 2 |
Oxypurinol | 16 | 50 | 1 |
Paraxanthine | 26 | 100 | 0 |
Tramadol | 28 | 10 | 1 |
Substance | Min (ng/dm3) | Max (ng/dm3) | Median (ng/dm3) | Average (ng/dm3) | Standard Deviation (ng/dm3) | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Acesulfame | 443 | 15,000 | 1250 | 3846 | 4691 | 122 |
Diclofenac | ˂20 | 3400 | 816 | 908 | 651 | 72 |
Gabapentin | ˂10 | 33,000 | 1900 | 7701 | 9532 | 124 |
Hydrochlorothiazide | 388 | 3440 | 1030 | 1291 | 744 | 58 |
Ibuprofen | ˂20 | 1200 | 274 | 413 | 350 | 85 |
Metoprolol | ˂10 | 1350 | 610 | 623 | 298 | 48 |
Oxypurinol | ˂50 | 34,700 | 20,250 | 16,946 | 11,167 | 66 |
Paraxanthine | 306 | 32,000 | 1285 | 3464 | 6930 | 200 |
Tramadol | ˂10 | 1500 | 955 | 912 | 365 | 40 |
Substance | Number of Samples | Detection Limit (ng/dm3) | Number of Samples below Detection Limit |
---|---|---|---|
Acesulfame | 16 | 50 | 0 |
Diclofenac | 28 | 20 | 2 |
Gabapentin | 28 | 10 | 2 |
Hydrochlorothiazide | 28 | 50 | 0 |
Ibuprofen | 28 | 20 | 2 |
Metoprolol | 28 | 10 | 0 |
Oxypurinol | 16 | 50 | 2 |
Paraxanthine | 26 | 100 | 0 |
Tramadol | 28 | 10 | 0 |
Substance | Min (ng/dm3) | Max (ng/dm3) | Median (ng/dm3) | Average (ng/dm3) | Standard Deviation (ng/dm3) | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Acesulfame | 695 | 11,800 | 1900 | 3177 | 3164 | 100 |
Diclofenac | ˂20 | 1400 | 360 | 457 | 288 | 63 |
Gabapentin | ˂10 | 3120 | 1045 | 1200 | 740 | 62 |
Hydrochlorothiazide | 370 | 2300 | 1055 | 1135 | 498 | 44 |
Ibuprofen | ˂20 | 2990 | 200 | 315 | 540 | 171 |
Metoprolol | 22 | 429 | 205 | 208 | 106 | 51 |
Oxypurinol | ˂50 | 20,000 | 8205 | 8142 | 6378 | 78 |
Paraxanthine | 163 | 11,400 | 577 | 1816 | 2907 | 160 |
Tramadol | 29 | 540 | 147 | 188 | 129 | 69 |
Substance | Number of Samples | Detection Limit (ng/dm3) | Number of Samples below Detection Limit |
---|---|---|---|
Acesulfame | 16 | 50 | 0 |
Diclofenac | 28 | 20 | 20 |
Gabapentin | 28 | 10 | 2 |
Hydrochlorothiazide | 28 | 50 | 25 |
Ibuprofen | 28 | 20 | 16 |
Metoprolol | 28 | 10 | 17 |
Oxypurinol | 16 | 50 | 2 |
Paraxanthine | 26 | 100 | 1 |
Tramadol | 28 | 10 | 5 |
Substance | Min (ng/dm3) | Max (ng/dm3) | Median (ng/dm3) | Average (ng/dm3) | Standard Deviation (ng/dm3) | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Acesulfame | 140 | 631 | 343 | 337 | 131 | 39 |
Diclofenac | ˂20 | 91 | ˂20 | 26 | 14 | 54 |
Gabapentin | ˂10 | 280 | 171 | 157 | 64 | 41 |
Hydrochlorothiazide | ˂50 | 188 | ˂50 | 60 | 33 | 55 |
Ibuprofen | ˂20 | 110 | ˂20 | 30 | 22 | 73 |
Metoprolol | ˂10 | 26 | ˂10 | 12 | 4 | 33 |
Oxypurinol | ˂50 | 1820 | 483 | 597 | 436 | 73 |
Paraxanthine | ˂100 | 1020 | 165 | 264 | 246 | 93 |
Tramadol | ˂10 | 36 | 20 | 19 | 7 | 37 |
Substance | Number of Samples | Detection Limit (ng/dm3) | Number of Samples below Detection Limit |
---|---|---|---|
Acesulfame | 15 | 50 | 0 |
Diclofenac | 26 | 20 | 15 |
Gabapentin | 26 | 10 | 4 |
Hydrochlorothiazide | 26 | 50 | 11 |
Ibuprofen | 26 | 20 | 18 |
Metoprolol | 26 | 10 | 13 |
Oxypurinol | 15 | 50 | 3 |
Paraxanthine | 25 | 100 | 10 |
Tramadol | 26 | 10 | 9 |
Substance | Min (ng/dm3) | Max (ng/dm3) | Median (ng/dm3) | Average (ng/dm3) | Standard Deviation (ng/dm3) | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Acesulfame | 110 | 931 | 270 | 356 | 231 | 50 |
Diclofenac | ˂20 | 170 | ˂20 | 35 | 32 | 91 |
Gabapentin | ˂10 | 315 | 29 | 47 | 59 | 125 |
Hydrochlorothiazide | ˂50 | 1380 | 88 | 165 | 258 | 156 |
Ibuprofen | ˂20 | 69 | ˂20 | 25 | 11 | 44 |
Metoprolol | ˂10 | 36 | 11 | 16 | 8 | 50 |
Oxypurinol | ˂50 | 2800 | 205 | 464 | 677 | 146 |
Paraxanthine | ˂100 | 933 | 112 | 204 | 202 | 99 |
Tramadol | ˂10 | 92 | 17 | 29 | 24 | 83 |
Substance | Number of Analyses Total | Number of Analyses above Detection Limit | Detection Limit (ng/dm3) | Maximum Concentration (ng/dm3) |
---|---|---|---|---|
Acesulfame | 16 | 8 | 100 | 318 |
Azithromycin | 28 | 2 | 10 | 274 |
Diclofenac | 28 | 1 | 20 | 58 |
Estrone | 6 | 2 | 1 | 5 |
Gabapentin | 28 | 25 | 10 | 157 |
Hydrochlorothiazide | 28 | 2 | 50 | 99 |
Chloramphenicol | 28 | 1 | 20 | 48 |
Ibuprofen | 28 | 3 | 20 | 56 |
Ibuprofen-2-hydroxy | 28 | 2 | 30 | 91 |
Carbamazepine | 28 | 7 | 10 | 13 |
Carbamazepine-E | 28 | 2 | 10 | 12 |
Lamotrigine | 8 | 5 | 10 | 15 |
Oxypurinol | 16 | 7 | 50 | 868 |
Paraxanthine | 26 | 13 | 100 | 424 |
Progesterone | 6 | 2 | 0.5 | 2 |
Ranitidine | 28 | 2 | 10 | 75 |
Sulfamerazine | 28 | 2 | 10 | 22 |
Telmisartan | 8 | 7 | 20 | 55 |
Tramadol | 28 | 5 | 10 | 13 |
Trimethoprim | 28 | 1 | 10 | 16 |
Substance | Number of analyses Total | Number of Analyses above Detection Limit | Detection Limit (ng/dm3) | Maximum Concentration (ng/dm3) |
---|---|---|---|---|
Acesulfame | 28 | 2 | 50 | 61 |
Azithromycin | 28 | 2 | 10 | 28 |
Estrone | 6 | 3 | 1 | 5 |
Gabapentin | 28 | 1 | 10 | 18 |
Ibuprofen | 28 | 3 | 20 | 52 |
Paraxanthine | 28 | 1 | 100 | 187 |
Ranitidine | 28 | 1 | 10 | 39 |
Sulfamerazine | 28 | 1 | 10 | 24 |
Tramadol | 28 | 1 | 10 | 85 |
Substance | Unit | Detection Limit | W1 | W2 |
---|---|---|---|---|
Acesulfame | ng/dm3 | 50 | 212 | |
Bisphenol A | ng/dm3 | 50 | 247 | |
Estrone | ng/dm3 | 1 | 3.6 | 2.5 |
Gabapentin | ng/dm3 | 10 | 23.7 |
Profile | Long-Term Average Flow Rate (L/s) | Estimate of Average PPCP Substance Concentration (ng/dm3) | Mass Flow General Value (g/day) |
---|---|---|---|
Bernatice | 0.2 | 11,000 | 1.0 |
Brzotice | 0.8 | 400 | 0.02 |
Dolni Kralovice | 5.0 | 18,000 | 7.8 |
Hnevkovice | 1.7 | 36,000 | 5.3 |
Hulice | 0.5 | 400 | 0.02 |
Kacerov | 80 | 900 | 6.2 |
Kozli | 1.1 | 16,000 | 1.5 |
Miletin | 1300 | 1400 | 157.3 |
Radikovice | 1.3 | 800 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datel, J.V.; Hrabankova, A. Pharmaceuticals Load in the Svihov Water Reservoir (Czech Republic) and Impacts on Quality of Treated Drinking Water. Water 2020, 12, 1387. https://doi.org/10.3390/w12051387
Datel JV, Hrabankova A. Pharmaceuticals Load in the Svihov Water Reservoir (Czech Republic) and Impacts on Quality of Treated Drinking Water. Water. 2020; 12(5):1387. https://doi.org/10.3390/w12051387
Chicago/Turabian StyleDatel, Josef V., and Anna Hrabankova. 2020. "Pharmaceuticals Load in the Svihov Water Reservoir (Czech Republic) and Impacts on Quality of Treated Drinking Water" Water 12, no. 5: 1387. https://doi.org/10.3390/w12051387
APA StyleDatel, J. V., & Hrabankova, A. (2020). Pharmaceuticals Load in the Svihov Water Reservoir (Czech Republic) and Impacts on Quality of Treated Drinking Water. Water, 12(5), 1387. https://doi.org/10.3390/w12051387