Seasonally Variant Stable Isotope Baseline Characterisation of Malawi’s Shire River Basin to Support Integrated Water Resources Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Setting
2.1.1. Water Resources
2.1.2. Geology and Hydrogeology
2.1.3. Topography and Climate
2.1.4. Data Availability
2.1.5. Water Sampling and Analysis
3. Results
3.1. Stable Isotope Results
3.1.1. Isotopic Content of Precipitation-Local Meteoric Characteristics
3.1.2. Isotopic Content of Surface Water and Groundwater
3.2. Seasonal Variation in Isotopic Spatial Distributions
3.3. Hydrochemical Results
3.3.1. Hydrochemical Characteristics of Surface Water and Groundwater
3.3.2. Spatial Distribution
3.4. Groundwater—Hydrochemical and Isotopic Evidences Combined
4. Discussion
4.1. System Conceptualisation and Isotopic Diagnostic Tools
- Distinct surface water dry-season enrichment and wet-season depletion, but with minor retention of enriched isotopic signatures ascribed to Lake Malawi influences;
- Isotopic signature corroboration of wet-season river flows mostly arising from local precipitation, with dry-season flows supported by increased groundwater contributions;
- Precipitation signatures consistent with expected isotopic composition for Indian Ocean monsoon derived precipitation that forms the predominant water input to the basin;
- Groundwater isotopic signatures followed a LMWL of limited spread taken to signify recharge by local precipitation occurs predominantly in core, rather than peripheral, wet-season months;
- Although few dry-season groundwater samples displayed evaporative enrichment, isotopic seasonality was more pronounced in the lowlands.
4.2. Benefits to IWRM
- Assessment of ‘water mixing’ occurring naturally, or within engineered IWRM schemes that may enable identification and targeted protection of sources waters;
- Improved Water Resource Unit (WRU) management—this includes both individual and integrated WRU management in for instance nested monitoring of subcatchments and downstream catchment aggregates and linked groundwater bodies (mimicking approaches inherent to the European Water Framework Directive);
- Diagnostic assessment of land use change (e.g., deforestation and urban development) influence upon the balance of runoff to surface water, versus infiltration and recharge to groundwater [43];
- Assessment of wet/dry season dynamics recognizing significant contrast in seasonal precipitation and water availability to address increasing water-supply demands and environmental needs;
- Insight to groundwater—surface water interactions—baseflow support to rivers, ecosystems, and river abstractions for cities and agriculture, versus quite common mid-reach influent river recharge to Malawian groundwater;
- Surface water and groundwater resource storage capacity and their dynamic management (e.g., low storage inherent to basement rock pose a fundamental resource constraint);
- Irrigation scheme impact assessment—interaction with underlying groundwater resource including salinisation concerns—e.g., Shire Valley Irrigation Project [56];
- Transboundary aquifer and surface-water management—the SRB position upstream of sensitive downstream international water use [46], we have undertaken a recent (2019) transboundary Lower SRB isotope study in neighbouring Mozambique;
- Climate change management—risks to water-resource sustainability from long-term uncertainties in precipitation inputs and runoff, evaporation and recharge balances—climate change concern continues to fundamentally drive the CJF (Climate Justice Fund) Programme.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wassenaar, L.I.; Van Wilgenburg, S.L.; Larson, K.; Hobson, K.A. A groundwater isoscapes (δD, δ18O) for Mexico. J. Geochem. Explor. 2009, 102, 123–136. [Google Scholar] [CrossRef]
- Chavula, G.M.S. Malawi. In Groundwater Availability and Use in Sub-Saharan Africa: A Review of Fifteen Countries; Pavelic, P., Giordano, M., Keraita, B., Ramesh, V., Rao, T., Eds.; International Water Management Institute: Colombo, Sri Lanka, 2012; Available online: http://www.iwmi.cgiar.org/Publications/Books/PDF/groundwater_availability_and_use_in_sub-saharan_africa_a_review_of_15_countries.pdf (accessed on 15 October 2019).
- Martinez, J.L.; Raiber, M.; Cox, M. Assessment of groundwater–surface water interaction using long-term hydrochemical data and isotope hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia. Sci. Total. Environ. 2015, 536, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Gonçalvès, J.; Vallet-Coulomb, C.; Petersen, J.; Bruno, H.; Deschamps, P. Declining water budget in a deep regional aquifer assessed by geostatistical simulations of stable isotopes: Case study of the Saharan “Continental Intercalaire”. J. Hydrol. 2015, 531, 821–829. [Google Scholar] [CrossRef]
- Kalin, R.M.; Long, A. Application of hydrogeochemical modelling for validation of hydrologic flow modelling in the Tucson Basin Aquifer, Arizona, AZ, USA. In Mathematical Models and Their Applications to Isotope Studies in Groundwater Hydrology; IAEA: Vienna, Austria, 1994; pp. 209–254. Available online: https://inis.iaea.org/Search/search.aspx?orig_q=RN:26036831 (accessed on 24 January 2020).
- Kalin, R.M. Basic concepts and formulations for isotope-geochemical process investigations, procedures, and methodologies of geochemical modelling of groundwater systems. In Manual on Mathematical Models in Isotope Hydrology; Yurtsever, Y., Ed.; IAEA: Vienna, Austria, 1995; Volume 910, pp. 155–206. Available online: http://www-naweb.iaea.org/napc/ih/documents/TECDOCS/TECDOC%200910%20Mathematical%models%201996.PDF (accessed on 24 January 2020).
- Wallin, B.; Gaye, C.; Gourcy, L.; Aggarwal, P. Isotope Methods for Management of Shared Aquifers in Northern Africa. Ground Water 2005, 43, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Gaye, C.B.; Tindimugaya, C. Review: Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol. J. 2018, 27, 1099–1110. [Google Scholar] [CrossRef]
- Balagizi, C.M.; Kasereka, M.M.; Cuoco, E.; Liotta, M. Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central-Eastern Africa. Sci. Total Environ. 2018, 628, 1058–1078. [Google Scholar] [CrossRef]
- Kotchoni, D.O.V.; Vouillamoz, J.-M.; Lawson, F.M.A.; Adjomayi, P.; Boukari, M.; Taylor, R.G. Relationships between rainfall and groundwater recharge in seasonally humid Benin: A comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeol. J. 2018, 27, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Resende, T.C.; Longuevergne, L.; Gurdak, J.J.; Leblanc, M.; Favreau, G.; Ansems, N.; Van Der Gun, J.; Gaye, C.B.; Aureli, A. Assessment of the impacts of climate variability on total water storage across Africa: Implications for groundwater resources management. Hydrogeol. J. 2018, 27, 493–512. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, O. Groundwater recharge/discharge in semi-arid regions interpreted from isotope and chloride concentrations in north White Nile Rift, Sudan. Hydrogeol. J. 2008, 17, 679–692. [Google Scholar] [CrossRef]
- Babaye, M.S.A.; Orban, P.; Ousmane, B.; Favreau, G.; Brouyère, S.; Dassargues, A. Characterization of recharge mechanisms in a Precambrian basement aquifer in semi-arid south-west Niger. Hydrogeol. J. 2018, 27, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Faye, S.C.; Diongue, M.L.; Pouye, A.; Gaye, C.B.; Travi, Y.; Wohnlich, S.; Faye, S.; Taylor, R.G. Tracing natural groundwater recharge to the Thiaroye aquifer of Dakar, Senegal. Hydrogeol. J. 2019, 27, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, W.M. Palaeoclimate and groundwater evolution in Africa—Implications for adaptation and management. Hydrol. Sci. J. 2009, 54, 781–792. [Google Scholar] [CrossRef]
- Fontes, J.-C.; Andrews, J.N.; Edmunds, W.M.; Guerre, A.; Travi, Y. Paleorecharge by the Niger River (Mali) Deduced from groundwater geochemistry. Water Resour. Res. 1991, 27, 199–214. [Google Scholar] [CrossRef]
- Akpataku, K.V.; Rai, S.P.; Gnazou, M.D.-T.; Tampo, L.; Bawa, L.M.; Djaneye-Boundjou, G.; Faye, S. Hydrochemical and isotopic characterization of groundwater in the southeastern part of the Plateaux Region, Togo. Hydrol. Sci. J. 2019, 64, 983–1000. [Google Scholar] [CrossRef]
- Walker, D.; Parkin, G.; Gowing, J.; Haile, A.T. Development of a Hydrogeological Conceptual Model for Shallow Aquifers in the Data Scarce Upper Blue Nile Basin. Hydrology 2019, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Bahir, M.; Ouhamdouch, S.; Carreira, P.M.; Chkir, N.; Zouari, K. Geochemical and isotopic investigation of the aquifer system under semi-arid climate: Case of Essaouira basin (Southwestern Morocco). Carbonates Evaporites 2016, 33, 65–77. [Google Scholar] [CrossRef]
- Durowoju, O.; Butler, M.; Ekosse, G.-I.; Odiyo, J. Hydrochemical Processes and Isotopic Study of Geothermal Springs within Soutpansberg, Limpopo Province, South Africa. Appl. Sci. 2019, 9, 1688. [Google Scholar] [CrossRef] [Green Version]
- Kebede, S.; Abdalla, O.; Sefelnasr, A.; Tindimugaya, C.; Mustafa, O. Interaction of surface water and groundwater in the Nile River basin: Isotopic and piezometric evidence. Hydrogeol. J. 2016, 25, 707–726. [Google Scholar] [CrossRef]
- Owor, M.; Taylor, R.; Mukwaya, C.; Tindimugaya, C. Groundwater/surface-water interactions on deeply weathered surfaces of low relief: Evidence from Lakes Victoria and Kyoga, Uganda. Hydrogeol. J. 2011, 19, 1403–1420. [Google Scholar] [CrossRef]
- Nivet, F.; Bergonzini, L.; Mathé, P.-E.; Noret, A.; Monvoisin, G.; Majule, A.; Williamson, D. Influence of the balance of the intertropical front on seasonal variations of the isotopic composition in rainfall at Kisiba Masoko (Rungwe Volcanic Province, SW, Tanzania). Isot. Environ. Heal. Stud. 2018, 54, 352–369. [Google Scholar] [CrossRef] [PubMed]
- Geris, J.; Comte, J.C.; Franchi, F.; Petros, A.; Thato Selepeng, A.; Dikgola, K.; Kurugundla, C.; Villholth, K. From droughts to floods in Sub-Saharan regions; spatial and temporal patterns in hydrological response and water quality. In EGU General Assembly Conference Abstracts; EGU: Munich, Germany, 2018; Volume 20, p. 10294. Available online: https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10294-1.pdf (accessed on 15 January 2020).
- Guendouz, A.; Moulla, A.S.; Rémini, B.; Michelot, J.L. Hydrochemical and isotopic behaviour of a Saharan phreatic aquifer suffering severe natural and anthropic constraints (case of Oued-Souf region, Algeria). Hydrogeol. J. 2006, 14, 955–968. [Google Scholar] [CrossRef]
- Tarki, M.; Ben Hammadi, M.; El Mejri, H.; Dassi, L. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia. Appl. Radiat. Isot. 2016, 110, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Ganyaglo, S.Y.; Osae, S.; Akiti, T.; Armah, T.; Gourcy, L.; Vitvar, T.; Ito, M.; Otoo, I.A. Application of geochemical and stable isotopic tracers to investigate groundwater salinity in the Ochi-Narkwa Basin, Ghana. Hydrol. Sci. J. 2017, 62, 1301–1316. [Google Scholar] [CrossRef]
- Ré, V.; Faye, S.C.; Faye, A.; Faye, S.; Gaye, C.B.; Sacchi, E.; Zuppi, G.M. Water quality decline in coastal aquifers under anthropic pressure: The case of a suburban area of Dakar (Senegal). Environ. Monit. Assess. 2010, 172, 605–622. [Google Scholar] [CrossRef] [PubMed]
- Banda, L.; Rivett, M.; Kalin, R.M.; Zavison, A.; Phiri, P.; Kelly, L.; Chavula, G.; Kapachika, C.; Nkhata, M.; Kamtukule, S.; et al. Water–Isotope Capacity Building and Demonstration in a Developing World Context: Isotopic Baseline and Conceptualization of a Lake Malawi Catchment. Water 2019, 11, 2600. [Google Scholar] [CrossRef] [Green Version]
- Gonfiantini, R.; Zuppi, G.M.; Eccles, D.H.; Ferro, W. Isotope investigation of Lake Malawi. In Isotopes in Lake Studies; International Atomic Energy Agency; IAEA: Vienna, Austria, 1979; Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:12581226 (accessed on 10 January 2020).
- Kalebe, Y.N. Chemical and Isotopic Composition of Thermal Waters in Northern Part of Malawi. Available online: https://orkustofnun.is/gogn/unu-gtp-report/UNU-GTP-2017-13.pdf (accessed on 20 December 2019).
- Kambuku, D.; Tsujimura, M.; Kagawa, S. Groundwater recharge and flow processes as revealed by stable isotopes and geochemistry in fractured Hornblende-biotite-gneiss, Rivirivi Catchment, Malawi. Afr. J. Environ. Sci. Technol 2018, 12, 1–14. [Google Scholar]
- Kambuku, D.; Tsujimura, M.; Kagawa, S.; Mdala, H. Corroborating stable isotopic data with pumping test data to investigate recharge and groundwater flow processes in a fractured rock aquifer, Rivirivi Catchment, Malawi. Environ. Earth Sci. 2018, 77, 226. [Google Scholar] [CrossRef]
- Mapoma, H.W.T.; Xie, X.; Zhang, L. Redox control on trace element geochemistry and provenance of groundwater in fractured basement of Blantyre, Malawi. J. Afr. Earth Sci. 2014, 100, 335–345. [Google Scholar] [CrossRef]
- Missi, C.; Atekwana, E.A. Physical, chemical and isotopic characteristics of groundwater and surface water in the Lake Chilwa Basin, Malawi. J. Afr. Earth Sci. 2020, 162, 103737. [Google Scholar] [CrossRef]
- Monjerezi, M.; Vogt, R.D.; Aagaard, P.; Saka, J.D.K. Using δ87Sr/δ86Sr, δ18O and δ2H isotope data along with major chemistry composition to assess groundwater salinization in lower Shire River Valley, Malawi. Appl. Geochem. 2011, 26, 2201–2214. [Google Scholar] [CrossRef]
- Spigel, R.; Coulter, G. Comparison of Hydrology and Physical Limnology of the East African Great Lakes: Tanganyika, Malawi, Victoria, Kivu and Turkana (with reference to some North American Great Lakes). Limnol. Climatol. Paleoclimatol. East Afr. Lakes 2019, 103–139. [Google Scholar] [CrossRef]
- Government of Malawi. Malawi Hydrogeological Atlas; Ministry of Agriculture, Irrigation and Water Development: Lilongwe, Malawi, 2019.
- MoAIWD (Ministry of Agriculture, Irrigation and Water Development). State of the Basin Report for Shire River Basin: SRBMP–Sub-Component A1: Development of a Basin Planning Framework. June 2016. Available online: http://www.shirebasin.mw/index.php?option=com_joomdoc&task=document.download&path=State%20of%20the%20Basin%20Report.pdf&Itemid=559 (accessed on 20 January 2020).
- Malawi Water Department. Shire River Basin Atlas. Lilongwe, Malawi; Ministry of Agriculture, Irrigation & Water Development: Lilongwe, Malawi, 2016.
- Kelly, L.; Kalin, R.M.; Bertram, D.; Kanjaye, M.; Nkhata, M.; Sibande, H. Quantification of Temporal Variations in Base Flow Index Using Sporadic River Data: Application to the Bua Catchment, Malawi. Water 2019, 11, 901. [Google Scholar] [CrossRef] [Green Version]
- Kalin, R.M.; Mwanamveka, J.; Coulson, A.; Robertson, D.J.C.; Clark, H.; Rathjen, J.; Rivett, M. Stranded Assets as a Key Concept to Guide Investment Strategies for Sustainable Development Goal 6. Water 2019, 11, 702. [Google Scholar] [CrossRef] [Green Version]
- Rivett, M.O.; Budimir, L.; Mannix, N.; Miller, A.V.M.; Addison, M.J.; Moyo, P.; Wanangwa, G.J.; Phiri, O.L.; Songola, C.E.; Nhlema, M.; et al. Responding to Salinity in a Rural African Alluvial Valley Aquifer System: To Boldly Go beyond the World of Hand-Pumped Groundwater Supply? Sci. Total Environ. 2019, 653, 1005–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Government of the Republic of Malawi. Malawi Economic Growth Strategy; Government of the Republic of Malawi: Lilongwe, Malawi, 2014.
- MoAIWD (Ministry of Agriculture, Irrigation and Water Development). Shire Valley Irrigation Project. Environmental and Social Management Plan for Phase 1. 2017. Available online: http://documents.worldbank.org/curated/en/271121495837484038/pdf/SFG3386-REVISED-REPLACEMENT-EA-P158805-PUBLIC-Disclosed-8-8-2017.pdf (accessed on 3 January 2020).
- Fraser, C.M.; Kalin, R.M.; Rivett, M.; Nkhata, M.; Kanjaye, M. A national approach to systematic transboundary aquifer assessment and conceptualisation at relevant scales: A Malawi case study. J. Hydrol. Reg. Stud. 2018, 20, 35–48. [Google Scholar] [CrossRef]
- Coulibaly, J.Y.; Mbow, C.; Sileshi, G.W.; Beedy, T.; Kundhlande, G.; Musau, J. Mapping Vulnerability to Climate Change in Malawi: Spatial and Social Differentiation in the Shire River Basin. Am. J. Clim. Chang. 2015, 4, 282–294. [Google Scholar] [CrossRef] [Green Version]
- Bath, A.H. Hydrochemistry in Groundwater Development; Report No. WD/OS/80/20; Institute of Geological Sciences: London, UK, 1980. [Google Scholar]
- Mkandawire, P.P. Groundwater resources of Malawi. In Proceedings of the International Workshop on Managing Shared Aquifer Resources in Africa, Tripoli, Libya, 2–4 June 2002. [Google Scholar]
- Mulwafu, W.; Chavula, G.; Chipeta, C.; Ferguson, A.; Chilima, G.; Nkhoma, B. The Status of Water Demand Management in Malawi and Strategies for promoting it. Zomba, Malawi; University of Malawi, Chancellor College: Zomba, Malawi, 2008; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.194.8844&rep=rep1&type=pdf (accessed on 10 January 2020).
- Addison, M.J.; Rivett, M.O.; Robinson, H.; Fraser, A.; Miller, A.M.; Phiri, P.; Mleta, P.; Kalin, R.M. Fluoride occurrence in the lower East African Rift System, Southern Malawi. Sci. Total. Environ. 2020, 712, 136260. [Google Scholar] [CrossRef]
- Back, J.O.; Rivett, M.; Hinz, L.B.; Mackay, N.; Wanangwa, G.J.; Phiri, O.L.; Songola, C.E.; Thomas, M.A.; Kumwenda, S.; Nhlema, M.; et al. Risk assessment to groundwater of pit latrine rural sanitation policy in developing country settings. Sci. Total. Environ. 2018, 613, 592–610. [Google Scholar] [CrossRef] [Green Version]
- Government of the Republic of Malawi. Final Report Component B—Catchment Management. In Shire River Basin Management Programme Phase 1 Project; Government of the Republic of Malawi: Lilongwe, Malawi, 2017. [Google Scholar]
- Smith-Carrington, A.K.; Chilton, P.J. Groundwater Resources of Malawi; Overseas Development Administration Institute of Geological Sciences: London, UK, 1983; Available online: http://resources.bgs.ac.uk/sadcreports/malawi1983smithcarringtonmalawigwresources.pdf (accessed on 8 October 2019).
- Peel, M.C.; Finlayson, B.L.; McMahon, T. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Government of the Republic of Malawi. Department of Climate Change and Meteorological Services. 2019. Available online: http://www.rvatlas.org (accessed on 10 November 2019).
- Kelly, L.; Bertram, D.; Kalin, R.M.; Ngongondo, C. Characterization of Groundwater Discharge to Rivers in the Shire River Basin, Malawi. J. Water Sci. Eng. 2019, 5, 127–138. [Google Scholar] [CrossRef]
- Government of the Republic of Malawi, Ministry of Agriculture, Irrigation and Water Development. Project for National Water Resources Master Plan. in the Republic of Malawi—Final Report; Volume II: Main Report; Ministry of Agriculture, Irrigation and Water Development: Lilongwe, Malawi, 2014. Available online: http://open_jicareport.jica.go.jp/pdf/12184537_01.pdf (accessed on 5 January 2020).
- Miller, A.; Nhlema, M.; Kumwenda, S.; Mbalame, E.; Uka, Z.; Feighery, J.; Kalin, R. Evolving water-point mapping to strategic decision making in rural Malawi. In Transformation towards Sustainable and Resilient WASH Services, Proceedings of the 41st WEDC International Conference, Egerton University, Nakuru, Kenya, 17 April 2018; WEDC: Loughborough, UK, 2018; Available online: https://repository.lboro.ac.uk/articles/Evolving_water_point_mapping_to_strategic_decision_making_in_rural_Malawi/9593090 (accessed on 10 November 2019).
- IAEA/GNIP (International Atomic Energy Agency/Global Network of Isotopes in Precipitation). Precipitation Sampling Guide; International Atomic Energy Agency: Vienna, Austria, 2014; Available online: http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html (accessed on 5 November 2019).
- IAEA/WMO (International Atomic Energy Agency/World Meteorological Organization). Global Network of Isotopes in Precipitation. The GNIP Database; International Atomic Energy Agency: Vienna, Austria, 2019; Available online: http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html (accessed on 15 April 2019).
- Boschetti, T.; Cifuentes, J.; Iacumin, P.; Selmo, E. Local Meteoric Water Line of Northern Chile (18° S–30° S): An Application of Error-in-Variables Regression to the Oxygen and Hydrogen Stable Isotope Ratio of Precipitation. Water 2019, 11, 791. [Google Scholar] [CrossRef] [Green Version]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2012. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- IAEA (International Atomic Energy Agency). Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes; Training Course Series No. 35; International Atomic Energy Agency: Vienna, Austria, 2009; Available online: https://www.iaea.org/publications/8195/laser-spectroscopic-analysis-of-liquid-water-samples-for-stable-hydrogen-and-oxygen-isotopes (accessed on 8 November 2019).
- Agarwal, P.K.; Gibson, J.J.; Frohlich, K.; Kulkarni, K.M. Isotopic evidence for climatic conditions in Southeast Asia at the last glacial maximum. In Proceedings of the Conference on the Study of Environmental Change Using Isotope Techniques (IAEA), Vienna, Austria, 23–27 April 2001; pp. 28–41. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
C. Banda, L.; Rivett, M.O.; Kalin, R.M.; Zavison, A.S.K.; Phiri, P.; Chavula, G.; Kapachika, C.; Kamtukule, S.; Fraser, C.; Nhlema, M. Seasonally Variant Stable Isotope Baseline Characterisation of Malawi’s Shire River Basin to Support Integrated Water Resources Management. Water 2020, 12, 1410. https://doi.org/10.3390/w12051410
C. Banda L, Rivett MO, Kalin RM, Zavison ASK, Phiri P, Chavula G, Kapachika C, Kamtukule S, Fraser C, Nhlema M. Seasonally Variant Stable Isotope Baseline Characterisation of Malawi’s Shire River Basin to Support Integrated Water Resources Management. Water. 2020; 12(5):1410. https://doi.org/10.3390/w12051410
Chicago/Turabian StyleC. Banda, Limbikani, Michael O. Rivett, Robert M. Kalin, Anold S. K. Zavison, Peaches Phiri, Geoffrey Chavula, Charles Kapachika, Sydney Kamtukule, Christina Fraser, and Muthi Nhlema. 2020. "Seasonally Variant Stable Isotope Baseline Characterisation of Malawi’s Shire River Basin to Support Integrated Water Resources Management" Water 12, no. 5: 1410. https://doi.org/10.3390/w12051410
APA StyleC. Banda, L., Rivett, M. O., Kalin, R. M., Zavison, A. S. K., Phiri, P., Chavula, G., Kapachika, C., Kamtukule, S., Fraser, C., & Nhlema, M. (2020). Seasonally Variant Stable Isotope Baseline Characterisation of Malawi’s Shire River Basin to Support Integrated Water Resources Management. Water, 12(5), 1410. https://doi.org/10.3390/w12051410