Quantification of Energy Loss in Two Grated Inlets under Pressure
Abstract
:1. Introduction
2. Overview
- The friction losses; and
- The local losses.
3. Methodology
3.1. Experimental Setup
3.2. Test Protocol and Energy Loss Coefficients
4. Results
4.1. k Values of the Two Grates
4.2. Comparison of k Values for Inlets and Multi-Jet Valves
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Transverse Slope (%) | Longitudinal Slope (%) | Flow Rate (L/s) | Average Water Depth (m) | ||
---|---|---|---|---|---|
Without Grate | Grate Barcelona1 | Grate Barcelona2 | |||
2 | 0 | 20 | 0.0470 | 0.0562 | 0.0512 |
2 | 2 | 20 | 0.0467 | 0.0577 | 0.0514 |
2 | 4 | 20 | 0.0471 | 0.0571 | 0.0522 |
2 | 6 | 20 | 0.0476 | 0.0584 | 0.0505 |
2 | 8 | 20 | 0.0465 | 0.0554 | 0.0500 |
2 | 10 | 20 | 0.0447 | 0.0524 | 0.0466 |
2 | 0 | 30 | 0.0625 | 0.0737 | 0.0639 |
2 | 2 | 30 | 0.0623 | 0.0732 | 0.0660 |
2 | 4 | 30 | 0.0648 | 0.0741 | 0.0689 |
2 | 6 | 30 | 0.0613 | 0.0743 | 0.0624 |
2 | 8 | 30 | 0.0593 | 0.0740 | 0.0607 |
2 | 10 | 30 | 0.0591 | 0.0764 | 0.0637 |
2 | 0 | 40 | 0.0892 | 0.0925 | 0.0967 |
2 | 2 | 40 | 0.0842 | 0.0897 | 0.0923 |
2 | 4 | 40 | 0.0803 | 0.0895 | 0.0824 |
2 | 6 | 40 | 0.0801 | 0.0881 | 0.0836 |
2 | 8 | 40 | 0.0823 | 0.0852 | 0.0863 |
2 | 10 | 40 | 0.0834 | 0.0845 | 0.0841 |
2 | 0 | 50 | 0.0998 | 0.1046 | 0.1007 |
2 | 2 | 50 | 0.0994 | 0.1028 | 0.1033 |
2 | 4 | 50 | 0.1037 | 0.1043 | 0.1057 |
2 | 6 | 50 | 0.1042 | 0.1048 | 0.1043 |
2 | 8 | 50 | 0.0927 | 0.1106 | 0.1026 |
2 | 10 | 50 | 0.0922 | 0.1099 | 0.1017 |
References
- Aronica, G.T.; Lanza, L.G. Drainage efficiency in urban areas: A case study. Hydrol. Process. 2005, 19, 1105–1119. [Google Scholar] [CrossRef]
- Despotovic, J.; Plavšić, J.; Stefanovic, N.; Pavlovic, D. Inefficiency of storm water inlets as a source of urban floods. Water Sci. Technol. 2005, 51, 139–145. [Google Scholar] [CrossRef]
- Gómez, M.; Macchione, F.; Russo, B. Methodologies to study the surface hydraulic behaviour of urban catchments during storm events. Water Sci. Technol. 2011, 63, 2666–2673. [Google Scholar] [CrossRef]
- Comport, B.C.; Thornton, C.I. Hydraulic Efficiency of Grate and Curb Inlets for Urban Storm Drainage. J. Hydraul. Eng. 2012, 138, 878–884. [Google Scholar] [CrossRef]
- Martins, R.; Leandro, J.; Fernandes de Carvalho, R. Characterization of the hydraulic performance of a gully under drainage conditions. Water Sci. Technol. 2014, 69, 2423–2430. [Google Scholar] [CrossRef] [PubMed]
- Palla, A.; Colli, M.; Candela, A.; Aronica, G.T.; Lanza, L.G. Pluvial flooding in urban areas: The role of surface drainage efficiency. J. Flood Risk Manag. 2016, 11, S663–S676. [Google Scholar] [CrossRef]
- Kemper, S.; Schlenkhoff, A. Experimental study on the hydraulic capacity of grate inlets with supercritical surface flow conditions. Water Sci. Technol. 2019, 79, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Macchione, F.; Russo, B. Hydraulic behavior of urban streets during storm events. Ing. Hidraul. en Mexico 2009, 24, 51–62. [Google Scholar]
- Gómez, M.; Russo, B. Methodology to estimate hydraulic efficiency of drain inlets. Proc. Inst. Civ. Eng.-Water Manag. 2011, 164, 81–90. [Google Scholar] [CrossRef]
- Russo, B.; Gómez, M.; Tellez, J. Methodology to estimate the hydraulic efficiency of nontested continuous transverse grates. J. Irrig. Drain. Eng. 2013, 139, 864–871. [Google Scholar] [CrossRef]
- Rubinato, M.; Lee, S.; Martins, R.; Shucksmith, J.D. Surface to sewer flow exchange through circular inlets during urban flood conditions. J. Hydroinform. 2018, 20, 564–576. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.; Rubinato, M.; Kesserwani, G.; Leandro, J.; Djordjevic, S.; Shucksmith, J.D. On the characteristics of velocities fields in the vicinity of manhole inlet grates during flood events. Water Resour. Res. 2018, 54, 6408–6422. [Google Scholar] [CrossRef]
- Brown, S.A.; Schall, J.D.; Morris, J.L.; Doherty, C.L.; Stein, S.M.; Warner, J.C. Hydraulic Engineering Circular No. 22, Third Edition (2009) Revised 2013; Publication No. FHWA-NHI-10-009; U.S. Dept. of Transportation: Lakewood, CO, USA, 2009. [Google Scholar]
- Gómez, M.; Russo, B. Comparative Study among Different Methodologies to Determine Storm Sewer Inlet Efficiency from Test Data: HEC22 Methodology vs. UPC Method. In Water Resources management III; Publisher is WIT Press: Algarve, Portugal, 2005; pp. 623–632. [Google Scholar]
- Rubinato, M.; Martins, R.; Kesserwani, G.; Leandro, J.; Djordjević, S.; Shucksmith, J. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions. J. Hydrol. 2017, 552, 421–432. [Google Scholar] [CrossRef]
- Freire Diogo, A.; Antunes do Carmo, J. Peak flows and stormwater networks design—current and future management of urban surface watersheds. Water 2019, 11, 759. [Google Scholar] [CrossRef] [Green Version]
- Diogo, A.F.; Tiago Barros, L.; Santos, J.; Santos Temido, J. An effective and comprehensive model for optimal rehabilitation of separate sanitary sewer systems. Sci. Total. Environ. 2018, 612, 1042–1057. [Google Scholar] [CrossRef]
- Velasco, M.; Russo, B.; Cabello, À.; Termes, M.; Sunyer, D.; Malgrat, P. Assessment of the effectiveness of structural and nonstructural measures to cope with global change impacts in Barcelona. J. Flood Risk Manag. 2016, 11, S55–S68. [Google Scholar] [CrossRef]
- Russo, B.; Sunyer, D.; Velasco, M.; Djordjević, S. Analysis of extreme flooding events through a calibrated 1D/2D coupled model: The case of Barcelona (Spain). J. Hydroinformatics 2014, 17, 473–491. [Google Scholar] [CrossRef]
- Pedersen, F.B.; Mark, O. Head losses in storm sewer manholes: Submerged jet theory. J. Hydraul. Eng. 1990, 116, 1317–1328. [Google Scholar] [CrossRef]
- Marsalek, J. Head losses junction of two opposing lateral sewers. In Proceedings of the 4th International Conference on urban Storm Drainage, Lausanne, Switzerland, September 1987. [Google Scholar]
- Hare, C. Magnitude of hydraulic losses at junctions in piped drainage systems. In Conference on Hydraulics in Civil Engineering (1st: 1981: Sydney, N.S.W.). Conference on Hydraulics in Civil Engineering 1981: Preprints of Papers; Civil Engineering Transaction, Institute of Civil Engineers: Barton, Australia, 1983; pp. 71–77. [Google Scholar]
- Howarth, D.A.; Saul, A.J. Energy loss coefficient at manholes. In Proceedings of the 3rd International Conference on Urban Storm Drainage, Gothenburg, Sweden, 4–8 June 1984. [Google Scholar]
- Lindvall, G. Head losses at surcharged manholes with a main pipe and a 90 degrees lateral. In Proceedings of the 3rd International Conference on Urban Storm Drainage, Gothenburg, Sweden, 4–8 June 1984. [Google Scholar]
- Djordjević, S.; Prodanović, D.; Maksimović, Č.; Ivetić, M.; Savic, D. SIPSON-Simulation of Interaction between Pipe flow and Surface Overland flow in Networks. Water Sci. Technol. 2005, 52, 275–283. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model Quality Assurance Report: Dynamic Waver Flow Routing; U.S. Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- O’Loughlin, G.; Stack, B. Algorithms for Pit Pressure Changes and Head Losses in Stormwater Drainage Systems. Glob. Solut. Urban Drain. 2002. [CrossRef]
- Del Giudice, G.; Hager, W.H. Supercritical flow in 45° junction manhole. Irrig. Drainage Eng. 2001, 127, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, G.; Gisonni, C.; Hager, W.H. Supercritical Flow in Bend Manhole. J. Irrig. Drain. Eng. 2000, 126, 48–56. [Google Scholar] [CrossRef]
- Arao, S.; Kusuda, T.; Moriyama, K.; Hiratsuka, S.; Asada, J.; Hirose, N. Energy losses at three-way circular drop manholes under surcharged conditions. Water Sci. Technol. 2012, 66, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Rubinato, M. Physical Scale Modelling of Urban Flood Systems. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2015. [Google Scholar]
- Rubinato, M.; Martins, R.; Shucksmith, J.D. Quantification of energy losses at a surcharging manhole. Urban Water J. 2018, 15, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Bazin, P.-H.; Nakagawa, H.; Kawaike, K.; Paquier, A.; Mignot, E. Modeling flow exchanges between a street and an underground drainage pipe during urban floods. J. Hydraul. Eng. 2014. [CrossRef]
- Tellez-Alvarez, J.D. Image Processing and Experimental Techniques to Characterize the Hydraulic Performance of Grate Inlets. Ph.D. Thesis, Technical University of Catalonia, Barcelona, Spain, May 2019. [Google Scholar]
- Lahiouel, Y.; Haddad, A.K.; Chaoui, K. Evaluation of head losses in fluid transportation networks. Sci. Technol. B 2015, 23, 89–94. [Google Scholar]
- Vano Engineering. Available online: https://vanoengineering.wordpress.com/2012/12/30/head-loss-coefficients/ (accessed on 22 February 2019).
- Russo, B.; Velasco, M.; Monjo, R.; Martínez-Gomariz, E.; Sánchez, D.; Domínguez, J.L.; Gabàs, A.; Gonzalez, A. Evaluación de la resiliencia de los servicios urbanos frente a episodios de inundación en Barcelona. El proyecto RESCCUE. Ing. Agua 2020, 24, 101–118. [Google Scholar] [CrossRef]
- Russo, B.; Gómez, M.; Macchione, F. Pedestrian hazard criteria for flooded urban areas. Nat. Hazards 2013, 69, 251–265. [Google Scholar] [CrossRef]
- Pfister, M.; Gisonni, C. Head losses in junction manholes for free surface flows in circular conduits. J. Hydraul. Eng. 2014, 140, 06014015. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.-H.; Zhu, D.Z.; Rajaratnam, N. Experimental study of surcharged flow at combining sewer junctions. J. Hydraul. Eng. 2006, 132, 1259–1271. [Google Scholar] [CrossRef]
- Ramamurthy, A.S.; Zhu, W. Combining flows in 90° junctions of rectangular closed conduits. J. Hydraul. Eng. 1997, 12311, 1012–1019. [Google Scholar] [CrossRef]
- Gómez, M.; Russo, B.; Tellez-Alvarez, J. Experimental investigation to estimate the discharge coefficient of a grate inlet under surcharge conditions. Urban Water J. 2019, 16, 85–91. [Google Scholar] [CrossRef]
- Gómez, M.; Hidalgo Rabasseda, G.; Russo, B. Experimental campaign to determine grated inlet clogging factors in an urban catchment of Barcelona. Urban Water J. 2013, 10, 50–61. [Google Scholar] [CrossRef]
- Hydrostec. Available online: http://www.hydrostec.com.br/ingles/catalogo/circuitos_pressurizados/B30-15-0.pdf (accessed on 24 February 2019).
Type | Classification | Values k |
---|---|---|
Elbow | Regular 90°, flanged | 0.3 |
Regular 90°, threaded | 1.5 | |
Long radius 90°, flanged | 0.2 | |
Long radius 90°, threaded | 0.7 | |
Long radius 45°, flanged | 0.2 | |
Regular 45°, threaded | 0.4 | |
180° return bend | 180° return bend, flanged | 0.2 |
180° return bend, threaded | 1.5 | |
Tees | Line flow, flanged | 0.2 |
Line flow, threaded | 0.9 | |
Branch flow, flanged | 1.0 | |
Branch flow, threaded | 2.0 | |
Union, Threaded | 0.08 | |
Valves | Glove, fully open | 10 |
Angle, fully open | 2.0 | |
Gate, fully open | 0.15 | |
Gate, ¼ closed | 0.26 | |
Gate, ½ closed | 2.1 | |
Gate, ¾ closed | 17 | |
Swing check, forward flow | 2 | |
Swing check, backward flow | ∞ | |
Ball valve, fully open | 0.05 | |
Ball valve, 1/3 closed | 5.5 | |
Ball valve, 2/3 closed | 210 |
Grate Type | Length (cm) | Width (cm) | Holes Area (m2) |
---|---|---|---|
Barcelona1 | 74.5 | 26 | 0.0852 |
Barcelona2 | 74.5 | 26 | 0.0857 |
Flowrate (L/s) | Energy Loss Coefficient of Grate Barcelona1 (k) | Energy Loss Coefficient of Grate Barcelona2 (k) |
---|---|---|
20 | 3.41 | 1.33 |
30 | 2.02 | 0.43 |
40 | 0.44 | 0.39 |
50 | 0.42 | 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellez-Alvarez, J.; Gómez, M.; Russo, B. Quantification of Energy Loss in Two Grated Inlets under Pressure. Water 2020, 12, 1601. https://doi.org/10.3390/w12061601
Tellez-Alvarez J, Gómez M, Russo B. Quantification of Energy Loss in Two Grated Inlets under Pressure. Water. 2020; 12(6):1601. https://doi.org/10.3390/w12061601
Chicago/Turabian StyleTellez-Alvarez, Jackson, Manuel Gómez, and Beniamino Russo. 2020. "Quantification of Energy Loss in Two Grated Inlets under Pressure" Water 12, no. 6: 1601. https://doi.org/10.3390/w12061601
APA StyleTellez-Alvarez, J., Gómez, M., & Russo, B. (2020). Quantification of Energy Loss in Two Grated Inlets under Pressure. Water, 12(6), 1601. https://doi.org/10.3390/w12061601