Susceptibility to Degradation, the Causes of Degradation, and Trophic State of Three Lakes in North-West Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Characteristics of the Selected Lakes
2.2. Analytical Methods
2.3. Resilience of the Examined Lakes to the Influence of the Catchment
2.4. Evaluation of Anthropogenic Pressure on the Lakes under Study
2.5. Determination of the Trophic State of the Lakes
3. Results and Discussion
- -
- -
- -
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bajkiewicz-Grabowska, E. Clear lakes. Diagn. Limnol. Res. 2010, 7, 74. [Google Scholar]
- Vadeboncoeur, Y.M.; McIntyre, P.B.; Zanden, M.J.V. Borders of Biodiversity: Life at the Edge of the World’s Large Lakes. BioScience 2011, 61, 526–537. [Google Scholar] [CrossRef]
- Okuda, N.; Watanabe, K.; Fukumori, K.; Nakano, S.-I.; Nakazawa, T. Biodiversity in Aquatic Systems and Environments; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Van Vuuren, D.P.; Bouwman, A.F.; Beusen, A.H.W. Phosphorus demand forthe 1970–2100 period: A scenario analysis of resource depletion. Glob. Environ. Chang. 2010, 20, 438–439. [Google Scholar] [CrossRef]
- EEA, European Environment. State and Outlook. Part A—Integrated Assessment; European Environment Agency: Copenhagen, Danmark, 2005. (In Polish) [Google Scholar]
- GUS, Environmental Protection. Statistical yearbook; Central Statistical Office: Warsaw, Poland, 2017. (In Polish) [Google Scholar]
- Schindler, D.W. Eutrophication and Recovery in Experimental Lakes: Implications for Lake Management. Science 1974, 184, 897–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correll, D.L. Phosphorus: A rate limiting nutrient in surface waters. Poult. Sci. 1999, 78, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, X.; Hao, H.-L.; He, Z.-L. Mechanisms and assessment of water eutrophication*. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef]
- Taylor, W.; Lean, D.R.S. Observations on the dynamics and fate of dissolved organic phosphorus in lake water and a new model of eplimnetic P cycling. Aquat. Sci. 2018, 80, 13. [Google Scholar] [CrossRef] [Green Version]
- Hillbricht-Ilkowska, A. Biodiversity of freshwater habitats—Problems, needs, activities. IDEE Ekol. Ser. Szkice 1989, 13, 13–55. [Google Scholar]
- Lossow, K. Lake protection and remediation—Theory and practice. IDEE Ekol. Ser. Szkice 1998, 13, 55–71. [Google Scholar]
- Grochowska, J.; Tandyrak, R.; Augustyniak, R.; Łopata, M.; Parszuto, K. Nutrient Balance of North-Eastern Poland Lakes. In Polish River Basins and Lakes—Part I; Korzeniewska, E., Harnisz, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 86. [Google Scholar]
- Kowalczewska-Madura, K.; Dondajewska, R.; Gołdyn, R. Internal Phosphorus Loading in Eutrophic Lakes in Western Poland. In Polish River Basins and Lakes—Part I; Korzeniewska, E., Harnisz, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 86. [Google Scholar] [CrossRef]
- Kubiak, J. The largest dimictic lakes of West Pomerania. Trophy level, susceptibility on degradation and habitat conditions of ichthyofauna. Hear. AR Szczec. 2003, 214, 1–92. (In Polish) [Google Scholar]
- Kubiak, J.; Tórz, A. Eutrophication basic problems of lake water protection in West Pomerania. Pole. Pr. Biol. 2005, 2, 17–36. (In Polish) [Google Scholar]
- Wang, C.; Bi, J.; Fath, B.D. Effects of abiotic factors on ecosystem health of Taihu Lake, China based on eco-exergy theory. Sci. Rep. 2017, 7, 42872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Pathak, H. Eutrophication: Impact of Excess Nutrient Status in Lake Water Ecosystem. J. Environ. Anal. Toxicol. 2012, 2, 1–5. [Google Scholar] [CrossRef]
- Xu, F.-L.; Tao, S.; Dawson, R.; Li, B.-G. A GIS-based method of lake eutrophication assessment. Ecol. Model. 2001, 144, 231–244. [Google Scholar] [CrossRef]
- Hobot, A. (Ed.) Updating the List of JCWP and SCWP for the Purposes of the Next Update of Plans in 2015–2021 Together with Verification of Water Types of Water Bodies—STAGE I—Methodology; KZGW: Gliwice, Warszawa, Poland, 2014. [Google Scholar]
- Illies, J. Limnofauna Europaea. 2. Aufl; G.Fischer-Verlag: Stuttgart, Germany, 1978. [Google Scholar]
- Kondracki, J. Regional Geography of Poland; PWN: Warszawa, Poland, 1998. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 21th ed.; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Kudelska, D.; Cydzik, D.; Soszka, H. Proposal of a lake quality assessment system. Wiad. Ekol. 1981, 27, 149–173. [Google Scholar]
- Bajkiewicz-Grabowska, E. Assessment of the lakes susceptibility to degradation and the role of the catchment in this process. Wiad. Ekol. 1987, 33, 279–289. [Google Scholar]
- Bajkiewicz-Grabowska, E. The degree of natural susceptibility of lakes to eutrophication on the example of selected Polish lakes. Gospod. Wod. 1990, 12, 270–272. [Google Scholar]
- Bajkiewicz-Grabowska, E. Circulation of matter in river-lake systems; WGiSP UW: Warszawa, Poland, 2002. [Google Scholar]
- Vollenweider, R.A. Scientific Fundamentals of the Eutrophication of Lakes and Following Waters, with Particular Reference to Nitrogen and Phosphorous as Factors in Eutrophication; Organisation for Economic Co-operation and Development: Paris, France, 1971; Volume 27, pp. 1–61. [Google Scholar]
- Vollenweider, R.A. Input-output models with special reference to the phosphorus loading concept in limnolgy. Schweiz. Z. Hydrol. 1975, 37, 53–84. [Google Scholar]
- Vollenweider, R.A. Advances in defining critical loading level for phosphorus in lake eutrophication. Mem. Inst. Ital. Hydrobiol. 1976, 33, 53–83. [Google Scholar]
- Vollenweider, R.A. Global problems of eutrophication and its control. Symp. Biol. Hung. 1989, 38, 19–41. [Google Scholar]
- Hillbricht-Ilkowska, A.; Wisniewski, R. Trophic diversity of lakes of the Suwałki Landscape Park and its buffer zone—Current status, long-term variability, place in the trophic classification of lakes. In The Lake of the Suwałki Landscape Park. Relations with the Landscape, the State of Eutrophication and Protection Directions; Hillbricht-Ilkowska, A., Wiśniewski, R.J., Eds.; Scientific Publications of the Polish Academy of Science, Committee Human and Environment: Warszawa, Poland, 1994; Volume 7, pp. 181–200. [Google Scholar]
- Hillbricht-Ilkowska, A.; Kostrzewska-Szalkowska, I. Assessment of the phosphorus load and threat status of the lakes of the Krutynia River (Masurian Lake District) and the relationship between the load and the phosphorus concentration in the lakes. In Operation of River and Lake Systems in the Lake Landscape: The Krutynia River (Masurian Lake District); Hillbricht-Ilkowska, A., Wisniewski, R.J., Eds.; Scientific Publications of the Polish Academy of Science, Committee Human and Environment: Warszawa, Poland, 1996; Volume 13, pp. 97–123. [Google Scholar]
- Uchmański, J.; Szeligiewicz, W. Empirical models for predicting water quality, as applied to data on lakes of Poland. Ekol. Pol. 1989, 36, 285–316. [Google Scholar]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Limnology, Lake and River Ecosystems, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Hilbricht-Ilkowska, A. Ecological basis for surface water quality management and their habitat and nature. In Utilization and Protection of Surface Water Resources in Poland; Starkel, L., Ed.; Scientific Publications of the Polish Academy of Science, Committee Human and Environment: Warszawa Poland, 1997; Volume 17, pp. 63–88. [Google Scholar]
- Kajak, Z. Dependences of chosen indices of structure and functioning of ecosystems of different trophic status and mictic type for 42 lakes. Ecological characteristics of lakes in northeastern Poland versus their trophic gradient. Ekol. Pol. 1983, 31, 495–530. [Google Scholar]
- Cydzik, D.; Soszka, H. Changes in water quality of Polish lakes in the years 1991–2000 (based on lake monitoring results). Limnol. Rev. 2003, 3, 53–58. [Google Scholar]
- Gawrońska, H.; Brzozowska, R.; Grochowska, J.; Lossow, K. Possibilities to reduce loading to lake water by artificial aeration. Pol. J. Environ. Stud. 2003, 12, 1710179. [Google Scholar]
- Premazzi, G.; Cardoso, A.C.; Rodari, E.; Austoni, M.; Chiaudani, G. Hypolimnetic withdrawal coupled with oxygenation as lake restoration measures: The successful case of Lake Varese (Italy). Limnetica 2005, 24, 123–131. [Google Scholar]
- Siwek, H.; Włodarczyk, M.; Czerniawski, R. Trophic State and Oxygen Conditions of Waters Aerated with Pulverising Aerator: The Results from Seven Lakes in Poland. Water 2018, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Haghseresht, F.; Wang, S.; Do, D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl. Clay Sci. 2009, 46, 369–375. [Google Scholar] [CrossRef]
- Grochowska, J.; Brzozowska, R.; Łopata, M.; Augustyniak, R. Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods. Water Sci. Technol. 2013, 68, 234–239. [Google Scholar] [CrossRef]
- Bonisławska, M.; Nędzarek, A.; Rybczyk, A. Assessment of the use of precipitating agents and ceramic membranes for treatment of effluents with high concentrations of nitrogen and phosphorus from recirculating aquaculture systems. Aquac. Res. 2019, 50, 1248–1256. [Google Scholar] [CrossRef]
- Drenner, R.W.; Hambright, K.D. Review: Biomanipulation of fish assemblages as a lake restoration technique. Arch. Hydrobiol. 1999, 146, 129–165. [Google Scholar] [CrossRef]
- Klapper, H. Technologies for lake restoration. J. Limnol. 2003, 62, 73. [Google Scholar] [CrossRef] [Green Version]
- Sender, J.; Jaruga, C. Eutrophication of water reservoirs and role of macrophytes in this process. Inż. Ekol. 2017, 18, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Premazzi, G.; Dalmiglio, A.; Cardoso, A.C.; Chiaudani, G. Lake management in Italy: The implications of the Water Framework Directive. Lakes Reserv. Res. Manag. 2003, 8, 41–59. [Google Scholar] [CrossRef]
- Daroub, S.H.; Lang, T.A.; Diaz, O.A.; Grunwald, S. Long-term water quality trends after imlementing best management practices in south Florida. J. Environ. Qual. 2009, 38, 1683–1693. [Google Scholar] [CrossRef]
- Grochowska, J.; Łopata, M.; Augustyniak, R.; Płachta, A.; Tandyrak, R.; Parszuto, K. The innovative complex lake restoration technique designed for heavily polluted urban lake. Environ. Monit. Assess. 2020, in press. [Google Scholar]
- Jernelov, A. Phosphate reduction in lakes by precipitation with aluminium sulphate. In Proceedings of the 5th International Water Pollution Research Conference, Lisbon, Portugal, 18–20 October 2020. [Google Scholar]
- Wesołowski, P.; Brysiewicz, A. The effect of pulverising aeration on changes in the oxygen and nitrogen concentrations in water of Lake Starzyc. J. Water Land Dev. 2015, 25, 31–36. [Google Scholar] [CrossRef]
- Rosińska, J.; Kozak, A.; Dondajewska-Pielka, R.; Kowalczewska-Madura, K.; Gołdyn, R. Water quality response to sustainable restoration measures—Case study of urban Swarzędzkie Lake. Ecol. Indic. 2018, 84, 437–449. [Google Scholar] [CrossRef]
- Zamparas, M.; Zacharias, I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci. Total. Environ. 2014, 496, 551–562. [Google Scholar] [CrossRef]
Lake | Catchment Basin | Aquatic Region | Ecological Status | The risk of Failure to Meet Environmental Objectives |
---|---|---|---|---|
Maszewo * | Odra | Lower Odra and Coastal Zone | - | - |
Starzyca (Starzyc, Chociwel) | Odra | Lower Odra and Coastal Zone | poor | high |
Nowogardzkie (Nowogardno) | Odra | Lower Odra and Coastal Zone | poor | high |
Parameter | Unit | Maszewo | Starzyca | Nowogardzkie |
---|---|---|---|---|
Surface area | (km2) | 0.128 | 0.592 | 0.983 |
Water volume | (103 m3) | 264.0 | 1575.8 | 5087.3 |
Maximum depth | (m) | 3.0 | 6.1 | 10.9 |
Mean depth | (m) | 2.0 | 2.6 | 5.1 |
Length | (m) | 1430 | 1960 | 2410 |
Width | (m) | 150 | 370 | 600 |
Shoreline length | (m) | 3180 | 5175 | 5700 |
Maszewo | Starzyca | Nowogardzkie | ||
---|---|---|---|---|
The catchment: | km2 | 2.32 | 1.75 | 6.33 |
Including:
| % | 39 | 49 | 51 |
| % | 32 | 21 | 17 |
| % | 12 | 10 | 9 |
| % | 17 | 20 | 23 |
Parameter | Method | Units |
---|---|---|
Temperature | Standard Method 2550 | (°C) |
Dissolved oxygen (DO) | Standard Method 4500-O B | (mg O2·dm−3) |
Total phosphorus (TP) | Standard Method 4500-P | (mg P·dm−3) |
Chlorophyll “a” | Standard Method 10200-H | (µg·m−3) |
Parameter | Score | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
Mean depth [m] (a) | >10 | 5–10 | 3–5 | <3 |
Volume of the lake in relation to shoreline length (m3·m−1) (b) | >5 | 3–5 | 1–3 | <3 |
Percentage of lake stratification during summer stagnation (%) (c) | >35 | 20–35 | 10–20 | <10 |
Surface area of the active bottom in relation to epilimnion volume (m2·m−3) (d) | <0.10 | 0.10–0.15 | 0.15–0.30 | >0.30 |
Schindler’s coefficient—quotient of total catchment to lake capacity (m2·m−3) (e) | <10 | 10–30 | 30–100 | >100 |
Final Score | Descriptive Characteristics of the Lake | Lake Resilience Category |
---|---|---|
≤0.89 | High resilience of the lake to catchment impact | Category I |
0.90–1.69 | Moderate resilience of the lake to catchment impact | Category II |
1.70–2.40 | Low resilience of the lake to catchment impact | Category III |
≥2.41 | A nonresilient lake, strongly vulnerable to the catchment impact | Category IV |
Load Level | Hazard Category |
---|---|
Lactual < Lperm | I—ensures that the existing state of eutrophication is maintained in the long term |
Lperm < Lactual < Ldang | II—there is no guarantee of maintaining permanent mesotrophic conditions |
Lactual > Ldang | III—eutrophication is highly likely to progress rapidly |
Trophic State | TPmean. (Average Spring-Summer) | Chla (Summer) | Chla (Average Spring-Summer) | SD (Summer) | SD (Average Spring-Summer) | % O2 (Summer, at the Lake Bottom) |
---|---|---|---|---|---|---|
Units | (mg P·dm−3) | (µg·m−3) | (µg·m−3) | (m) | (m) | - |
Ultraoligotrophic | ≤0.004 | ≤2.5 | ≤1.0 | ≥6.0 | ≥12.0 | ≥90.0 |
Oligotrophic | ≤0.010 | ≤8.0 | ≤2.5 | ≥3.0 | ≥6.0 | ≥80.0 |
Mesotrophic | ≤0.035 | ≤25 | ≤8.0 | ≥1.5 | ≥3.0 | ≥40.0 |
Eutrophic | ≤0.100 | ≤75 | ≤25 | ≥0.7 | ≥1.5 | ≥10.0 |
Hypertrophic | >0.100 | >75 | >25 | <0.7 | <1.5 | <10 |
Trophic State | TSI-SD (Summer) | TSI-Chl (Summer) | TSI-TP (Summer) |
---|---|---|---|
Oligotrophic | ≤40 | ≤40 | ≤40 |
Mesotrophic | ≤60 | ≤60 | ≤60 |
Eutrophic | 61–80 | 61–80 | 61–80 |
Hypertrophic | >80 | >80 | >80 |
Lake | Dissolved Oxygen (DO) | Temperature | Secchi Disc (SD) | Total Phosphorus (TP) | Chlorophyll a |
---|---|---|---|---|---|
(mg O2 dm−3) | (°C) | (m) | (mg P dm−3) | (µg dm−3) | |
Maszewo surface | 17.1 | 20.7 | 1.1 | 0.126 | 43.0 |
Maszewo bottom | 0.2 | 11.3 | 0.413 | 20.3 | |
Starzyca surface | 11.6 | 21.2 | 1.5 | 0.153 | 30.0 |
Starzyca bottom | 0.1 | 12.0 | 0.189 | 23.0 | |
Nowogardzkie surface | 12.6 | 18.2 | 1.9 | 0.232 | 14.1 |
Nowogardzkie bottom | 1.1 | 12.3 | 0.377 | 13.9 |
Lake | Dissolved Oxygen (DO) | Temperature | Secchi Disc (SD) | Total Phosphorus (TP) | Chlorophyll a |
---|---|---|---|---|---|
(mg O2 dm−3) | (°C) | (m) | (mg P dm−3) | (µg dm−3) | |
Maszewo surface | 8.2 | 20.3 | 0.9 | 0.283 | 30.2 |
Maszewo bottom | 0.1 | 15.2 | 0.686 | 24.6 | |
Starzyca surface | 11.5 | 20.3 | 1.0 | 0.181 | 82.5 |
Starzyca bottom | 0.2 | 18.1 | 0.619 | 17.1 | |
Nowogardzkie surface | 9.3 | 19.7 | 1.2 | 0.234 | 21.6 |
Nowogardzkie bottom | 1.1 | 12.4 | 1.261 | 14.7 |
Lake | Parameters According to Table 5 | Final Score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | |||||||
m | pts | m3·m−1 | pts | % | pts | m2·m−3 | pts | m2·m−3 | pts | ||
Maszewo | 2.0 | 3 | 0.83 | 3 | 0 | 3 | 0.48 | 3 | 40.2 | 2 | 2.8 |
Starzyca | 2.6 | 3 | 2.94 | 2 | 0 | 3 | 0.38 | 3 | 15.6 | 1 | 2.4 |
Nowogardzkie | 5.1 | 1 | 3.15 | 1 | 2.3 | 3 | 0.18 | 2 | 1.4 | 0 | 1.4 |
Lake | Lake Surface | Arable Land | Forests | Urban Areas | Meadow | Total Phosphorous Load | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phosphorous Load (0.5 kg P ha−1) | Phosphorous Load (0.4 kg P ha−1) | Phosphorous Load (0.1 kg P ha−1) | Phosphorous Load (0.9 kg P ha−1) | Phosphorous Load (0.4 kg P ha−1) | |||||||||||||
ha | kg | g m−2 ∙year−1 | ha | kg | g m−2 ∙year−1 | ha | kg | g m−2 ∙year−1 | ha | kg | g m−2 ∙year−1 | ha | kg | g m−2 ∙year−1 | kg | g m−2 ∙year−1 | |
Maszewo | 12.8 | 6.4 | 0.050 | 90.0 | 36.0 | 0.040 | 74.0 | 7.4 | 0.010 | 172.0 | 154.8 | 0.107 | 21.0 | 8.4 | 0.041 | 213.0 | 0.248 |
Starzyca | 59.2 | 29.5 | 0.050 | 83.0 | 33.2 | 0.044 | 35.7 | 3.6 | 0.009 | 34.0 | 30.6 | 0.090 | 17.0 | 6.8 | 0.040 | 103.7 | 0.233 |
Nowogardzkie | 98.3 | 49.2 | 0.050 | 322.8 | 129.1 | 0.066 | 107.6 | 10.8 | 0.013 | 145.6 | 131.0 | 0.096 | 57.0 | 22.8 | 0.052 | 342.9 | 0.277 |
Lake | Phosphorus Load | The Permissible Load Exceeded by: | The Dangerous Load Exceeded by: | Hazard Category | ||
---|---|---|---|---|---|---|
Real | Permissible | Dangerous | ||||
g∙m−2 ∙year−1 | g m−2∙year−1 | g∙m−2∙year−1 | ||||
Maszewo | 0.248 | 0.607 | 1.214 | 0 | 0 | I |
Starzyca | 0.233 | 0.074 | 0.149 | 3.1 | 1.6 | III |
Nowogardzkie | 0.277 | 0.065 | 0.130 | 4.3 | 2.1 | III |
Lake | Actual Phosphorus Load | Relation | Total Phosphorus Load |
---|---|---|---|
g m−2∙year−1 | g m−2∙year−1 | ||
Maszewo | 0.248 | < | 18.9 |
Starzyca | 0.233 | < | 8.9 |
Nowogardzkie | 0.277 | < | 7.6 |
Lake | TPmean (Average Spring-Summer) | Trophic State | Chla (Summer) | Trophic State | Chla (Average for Spring-Sumer) | Trophic State | SD (Summer) | Trophic State | SD (Average for Spring-Summer) | Trophic state | %O2 (Summer at the Bottom) | Trophic State |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maszewo | 0.377 | H | 57.7 | E | 50.4 | H | 0.9 | E | 1.0 | H | 1.7 | H |
Starzyca | 0.167 | H | 82.5 | H | 56.7 | H | 1.0 | E | 1.3 | H | 0.8 | H |
Nowogardzkie | 0.233 | H | 21.6 | M | 18.0 | E | 1.2 | E | 1.6 | E | 1.7 | H |
Lake | Carlson Indices | Trophic State | |||
---|---|---|---|---|---|
TSI-SD | TSI-Chl | TSI-TP | TSI | ||
Maszewo | 61.5 | 70.4 | 85.6 | 73.7 | eutrophic |
Starzyca | 60.0 | 73.9 | 79.1 | 71.0 | eutrophic |
Nowogardzkie | 57.4 | 60.7 | 82.5 | 66.9 | eutrophic |
Lake | Category of Resilience to the Influence of the Catchment | Hazard Category | The Way of Phosphorus Supply to the Lake | Trophic State according to Carlson [36] |
---|---|---|---|---|
Maszewo | IV | I | from the catchment and externally | eutrophic |
Starzyca | III | III | from the catchment and externally | eutrophic |
Nowogardzkie | II | III | from the catchment and externally | eutrophic |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tórz, A.; Bonisławska, M.; Rybczyk, A.; Nędzarek, A.; Tański, A. Susceptibility to Degradation, the Causes of Degradation, and Trophic State of Three Lakes in North-West Poland. Water 2020, 12, 1635. https://doi.org/10.3390/w12061635
Tórz A, Bonisławska M, Rybczyk A, Nędzarek A, Tański A. Susceptibility to Degradation, the Causes of Degradation, and Trophic State of Three Lakes in North-West Poland. Water. 2020; 12(6):1635. https://doi.org/10.3390/w12061635
Chicago/Turabian StyleTórz, Agnieszka, Małgorzata Bonisławska, Agnieszka Rybczyk, Arkadiusz Nędzarek, and Adam Tański. 2020. "Susceptibility to Degradation, the Causes of Degradation, and Trophic State of Three Lakes in North-West Poland" Water 12, no. 6: 1635. https://doi.org/10.3390/w12061635
APA StyleTórz, A., Bonisławska, M., Rybczyk, A., Nędzarek, A., & Tański, A. (2020). Susceptibility to Degradation, the Causes of Degradation, and Trophic State of Three Lakes in North-West Poland. Water, 12(6), 1635. https://doi.org/10.3390/w12061635