Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cropland Extraction
2.3. Drought Index Calculation
2.4. Drought Probability Mapping
2.5. Trend Analysis
3. Results
3.1. Drought Distribution
3.2. Drought Map
3.3. Drought Index Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mishra, K.A.; Singh, P.V. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Sloan, C. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Patrick, E. Drought characteristics and management in Central Asia and Turkey. In FAO Water Reports; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i6738e.pdf (accessed on 30 April 2019).
- Ta, Z.; Yu, R.; Chen, X.; Mu, G.; Guo, Y. Analysis of the spatio-temporal patterns of dry and wet conditions in Central Asia. Atmosphere 2018, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT Statistics Database. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 December 2017).
- Hagg, W.; Mayer, C.; Lambrecht, A.; Kriegel, D.; Azizov, E. Glacier changes in the Big Naryn basin, Central Tian Shan. Glob. Planet. Chang. 2013, 110, 40–50. [Google Scholar] [CrossRef]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Mannocchi, F.; Todisco, F.; Vergni, L. Agricultural drought: Indices, definition and analysis. In The Basis of Civilization—Water Science? UNESCO/IAHS/IWHA Symposium: Wallingford, UK, 2004; pp. 246–254. [Google Scholar]
- Bayissa, Y.; Maskey, S.; Tadesse, T.; Van Andel, S.J.; Moges, S.; Van Griensven, A.; Solomatine, D. Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia. Geosciences 2018, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Choi, M.; Jacobs, J.M.; Anderson, M.C.; Bosch, D.D. Evaluation of drought indices via remotely sensed data with hydrological variables. J. Hydrol. 2013, 476, 265–273. [Google Scholar] [CrossRef]
- Rojas, O.; Vrieling, A. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352. [Google Scholar] [CrossRef]
- Chen, C.F.; Son, N.T.; Chen, C.R.; Chiang, S.H.; Chang, L.Y.; Valdez, M. Drought monitoring in cultivated areas of Central America using multi-temporal MODIS data. Geomat. Nat. Hazards Risk ISSN 2017, 8, 402–417. [Google Scholar] [CrossRef] [Green Version]
- Amalo, L.F.; Hidayat, R. Comparison between remote-sensing-based drought indices in East Java. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bogor, Indonesia, 2017; Volume 54, p. 012009. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N. Comments on the use of the Vegetation Health Index over Mongolia. Int. J. Remote Sens. 2006, 27, 2017–2024. [Google Scholar] [CrossRef]
- Kogan, F.; Gitelson, A.; Zakarin, E.; Spivak, L.; Lebedev, L. AVHRR-Based Spectral Vegetation Index for Quantitative Assessment of Vegetation State and Productivity: Calibration and Validation. Photogramm. Eng. Remote Sens. 2003, 69, 899–906. [Google Scholar] [CrossRef]
- Vitkovskaya, I.; Batyrbayeva, M.; Spivak, L. The estimate of the spatial-temporal features of vegetation cover of Kazakhstan based on time series satellite indices in 2000–2015. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; ISPRS: Prague, Czech Republic, 2016; pp. 1067–1071. [Google Scholar] [CrossRef]
- Gitelson, A.; Felix, K.; Spivak, L.; Zakarin, E.; Lebed, L. Estimation of Seasonal Dynamics of Pasture and Crop Productivity in Kazakhstan Using NOAA/AVHRR Data. In IGARSS’96. 1996 International Geoscience and Remote Sensing Symposium; IGARSS: Lincoln, NE, USA, 1996; pp. 209–211. Available online: https://digitalcommons.unl.edu/natrespapers/234 (accessed on 15 June 2017).
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Chang. 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Mirzabaev, A. Climate Volatility and Change in Central Asia: Economic Impacts and Adaptation. 2016. Available online: http://hss.ulb.uni-bonn.de/2013/3238/3238.htm (accessed on 16 June 2018).
- Chen, X.; Zhang, C.; Luo, G.P. Modeling Dryland Ecosystems’ Response to Global Change in Central Asia; Science Press: Beijing, China, 2014; Available online: https://chinascientificbooks.com (accessed on 20 April 2020).
- Chen, X.; Zhou, Q. Ecological and Environmental Remote Sensing in Arid Zones—A Case Study of Central Asia; Science Press: Beijing, China, 2015; Available online: https://amazon.com/ECOLOGICAL-ENVIRONMENTAL-REMOTE-SENSING-CENTRAL/dp/7030461665 (accessed on 10 April 2020).
- Kariyeva, J.; van Leeuwen, W.J.D. Phenological dynamics of irrigated and natural drylands in Central Asia before and after the USSR collapse. Agric. Ecosyst. Environ. 2012, 162, 77–89. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015, 170, 48–61. [Google Scholar] [CrossRef]
- Bohovic, R.; Dobrovolny, P.; Klein, D. The spatial and temporal dynamics of remotely-sensed vegetation phenology in central Asia in the 1982–2011 period. Eur. J. Remote Sens. 2016, 49, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. International Journal of Applied Earth Observation and Geoinformation Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Giese, E.; Mossig, I.; Rybski, D.; Bunde, A. Long-term analysis of air temperature trends in Central Asia. Erdkunde 2007, 61, 186–202. [Google Scholar] [CrossRef]
- Erdinger, L.; Hollert, H.; Eckl, P. Aral Sea: An Ecological Disaster Zone with Impact on Human Health. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, ON, Canada, 2011; Volume 1, pp. 136–144. ISBN 978-0-444-52272-6. [Google Scholar]
- Chen, X.; Bai, J.; Li, X.; Luo, G.; Li, J.; Li, B.L. Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Curr. Opin. Environ. Sustain. 2013, 5, 116–127. [Google Scholar] [CrossRef]
- Lioubimtseva, E.U.; Henebry, G.M. Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world? Front. Earth Sci. 2012, 6, 157–166. [Google Scholar] [CrossRef]
- Kazhydromet. Drought Management and Mitigation Assessment for Kazakhstan, Phase Two: Regional Vulnerability and Capacity Assessment Survey; Kazhydromat: Almaty, Kazakhstan, 2006; Available online: https://kazhydromet.kz/en/ (accessed on 18 June 2019).
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M.; Defourny, P. Land Cover CCI Product User Guide Version 2; ESA Public Document CCI-LC-PUG: Paris, France, 2014. [Google Scholar]
- Yu, K.; Wang, Z.; Sun, L.; Wang, J.; Shan, J.; Lu, B. Crop phenology estimation by time series MODIS medium-resolution data. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–4. [Google Scholar]
- Huete, A.; Didan, K.; Miura, H.; Rodriguez, E.P.; Gao, X.; Ferreira, L.F. Overview of the radiometric and biopyhsical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Lu, L.; Guo, H.; Kuenzer, C.; Klein, I.; Zhang, L.; Li, X. Analyzing phenological changes with remote sensing data in Central Asia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Jakarta, Indonesia, 23–24 January 2014; Volume 17, pp. 15–21. [Google Scholar]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. In NASA EOSDIS Land Processes DAAC; NASA LP DAAC, 2015; Available online: http://doi.org/10.5067/MODIS/MOD11A2.006 (accessed on 18 June 2019).
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Kogan, F. Operational Space Technology for Global Vegetation Assessment. Remote Sens. Environ. 2001, 82, 1949–1964. [Google Scholar] [CrossRef]
- Bokusheva, R.; Kogan, F.; Vitkovskaya, I.; Conradt, S.; Batyrbayeva, M. Agricultural and Forest Meteorology Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agric. Meteorol. 2016, 220, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.; Guo, W. Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens. 2016, 38, 161–178. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 390–402. [Google Scholar] [CrossRef]
- Morgounov, A.; Sonder, K.; Abugalieva, A.; Bhadauria, V.; Cuthbert, R.D.; Shamanin, V.; Zelenskiy, Y.; DePauw, R.M. Effect of climate change on spring wheat yields in North America and Eurasia in 1981–2015 and implications for breeding. PLoS ONE 2018, 13, e0204932. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.D.; Stewart, R.E.; Wang, H.; Barlow, M.; Berbery, E.H.; Cai, W.; Hoerling, M.P.; Kanikicharla, K.K.; Koster, R.D.; Lyon, B.; et al. Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits. J. Clim. 2016, 29, 3989–4019. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.; Wang, H.; Koster, R.; Suarez, M. Northern Eurasian Heat Waves and Droughts. J. Clim. 2014, 27, 3169–3207. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.-M. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes. J. Hydrometeorol. 2011, 13, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Yon, B.R.L. Drought in Central and Southwest Asia: La Niña, the Warm Pool, and Indian Ocean Precipitation. J. Clim. 2002, 15, 697–700. [Google Scholar]
- Wegerich, K. Natural drought or human made water scarcity in Uzbekistan? Publ. Cent. Asia Cauc. 2002, 2, 154–162. [Google Scholar]
- Kogan, F.; Guo, W. Early twenty-first-century droughts during the warmest climate. Geomat. Nat. Hazards Risk 2016, 7, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chang, Y.; Schubert, S.; Koster, R. Subseasonal Prediction of Warm Season Drought in North America. In Science and Technology Infusion Climate Bulletin NOAA’s National Weather Service; 42nd NOAA Annual Climate Diagnostics and Prediction Workshop; NOAA: Norman, OK, USA, 2017; pp. 116–120. Available online: https://nws.noaa.gov/ost/climate/STIP/42CDPW/42cdpw-Hwang.pdf (accessed on 12 May 2020).
- Lioubimtseva, E. A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin. Environ. Earth Sci. 2014, 73, 719–729. [Google Scholar] [CrossRef]
- Yin, G.; Hu, Z.; Chen, X.; Tiyip, T. Vegetation dynamics and its response to climate change in Central Asia. J. Arid Land 2016, 8, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- The World Bank Group. Climate Change Knowledge Portal. Available online: http://sdwebx.worldbank.org/climateportal/ (accessed on 14 May 2020).
- Global Water Partnership. Integrated Water Resources Management in Central Asia: The Challenges of Managing Large Transboundary Rivers; Global Water Partnership: Tashkent, Uzbekistan, 2014. [Google Scholar]
- Propastin, P.A.; Kappas, M.; Muratova, N.R. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J. Environ. Inform. 2008, 12, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gao, X.; Wang, J.; Guo, H. Microwave soil moisture dynamics and response to climate change in Central Asia and Xinjiang Province, China, over the last 30 years. J. Appl. Remote Sens. 2015, 9, 096012. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Y. An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, central Asia. Quat. Int. 2015, 358, 106–112. [Google Scholar] [CrossRef]
- Sorg, A.; Mosello, B.; Shalpykova, G.; Allan, A.; Clarvis, M.H.; Stoffel, M. ScienceDirect Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. Environ. Sci. Policy 2013, 43, 68–77. [Google Scholar] [CrossRef]
- Devkota, M.; Devkota, K.P.; Gupta, R.K.; Martius, C. Conservation agriculture farming practices for optimizing water and fertilizer use efficiency in Central Asia. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; CIFOR: Bogor, Indonesia, 2015; pp. 242–252. Available online: https://cifor.org/knowledge/publications/5459/ (accessed on 10 April 2020).
- Seidakhmetov, M.; Alzhanova, A.; Baineeva, P.; Abdramankyzy, A.; Bekmanova, G.; Tymbaeva, Z. Mechanism of Transboundary Water Resources Management for Central Asia Countries. Procedia Soc. Behav. Sci. 2014, 143, 604–609. [Google Scholar] [CrossRef] [Green Version]
Severity Class | Value |
---|---|
Extreme drought | <10 |
Severe drought | 10–20 |
Moderate drought | 20–30 |
Mild drought | 30–40 |
No drought | >40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aitekeyeva, N.; Li, X.; Guo, H.; Wu, W.; Shirazi, Z.; Ilyas, S.; Yegizbayeva, A.; Hategekimana, Y. Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data. Water 2020, 12, 1738. https://doi.org/10.3390/w12061738
Aitekeyeva N, Li X, Guo H, Wu W, Shirazi Z, Ilyas S, Yegizbayeva A, Hategekimana Y. Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data. Water. 2020; 12(6):1738. https://doi.org/10.3390/w12061738
Chicago/Turabian StyleAitekeyeva, Nurgul, Xinwu Li, Huadong Guo, Wenjin Wu, Zeeshan Shirazi, Sana Ilyas, Asset Yegizbayeva, and Yves Hategekimana. 2020. "Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data" Water 12, no. 6: 1738. https://doi.org/10.3390/w12061738
APA StyleAitekeyeva, N., Li, X., Guo, H., Wu, W., Shirazi, Z., Ilyas, S., Yegizbayeva, A., & Hategekimana, Y. (2020). Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data. Water, 12(6), 1738. https://doi.org/10.3390/w12061738