Experimental, Numerical and Field Approaches to Scour Research
Abstract
:1. Introduction
2. Contributions
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whitehouse, R.J.S.; Harris, J.M.; Sutherland, J.; Rees, J. The nature of scour development and scour protection at offshore windfarm foundations. Mar. Pollut. Bull. 2011, 62, 73–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredsøe, J. Pipeline-seabed interaction. J. Wtrw. Port Coast. Ocean Eng. ASCE 2016, 142, 03116002. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Chiew, Y.M.; Melville, B.W.; Zheng, J. Current-induced scour at monopile foundations subjected to lateral vibrations. Coast. Eng. 2019, 144, 15–21. [Google Scholar] [CrossRef]
- Sumer, B.; Fredsøe, J. Scour below pipelines in waves. J. Wtrw. Port Coast. Ocean Eng. ASCE 1990, 116, 307–323. [Google Scholar] [CrossRef]
- Chiew, Y.M. Mechanics of local scour around submarine pipelines. J. Hydraul. Eng. ASCE 1990, 116, 515–529. [Google Scholar] [CrossRef]
- Liang, D.; Cheng, L. A numerical model for wave-induced scour below a submarine pipeline. J. Wtrw. Port Coast. Ocean Eng. ASCE 2005, 131, 193–202. [Google Scholar] [CrossRef]
- Fuhrman, D.R.; Baykal, C.; Sumer, B.M.; Jacobsen, N.G.; Fredsøe, J. Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines. Coast. Eng. 2014, 94, 10–22. [Google Scholar] [CrossRef]
- Fredsøe, J.; Hansen, E.A.; Mao, Y.; Sumer, B.M. Three dimensional scour below pipelines. J. Offshore Mech. Arct. Eng. 1988, 110, 373–379. [Google Scholar] [CrossRef]
- Cheng, L.; Yeow, K.; Zhang, Z.; Teng, B. Three-dimensional scour below pipelines in steady currents. Coast. Eng. 2009, 56, 577–590. [Google Scholar] [CrossRef]
- Wu, Y.S.; Chiew, Y.M. Three-dimensional scour at submarine pipelines. J. Hydraul. Eng. ASCE 2012, 138, 788–795. [Google Scholar] [CrossRef]
- Chen, B.; Cheng, L. Numerical investigations of three-dimensional flow and bed shear stress distribution around the span shoulder of pipeline. J. Hydrodyn. 2004, 16, 687–694. [Google Scholar]
- Li, F.Z.; Dwivedi, A.; Low, Y.M.; Hong, J.H.; Chiew, Y.M. Experimental investigation on scour under a vibrating catenary pipe. J. Eng. Mech. ASCE 2013, 139, 868–878. [Google Scholar] [CrossRef]
- Hsieh, S.C.; Low, Y.M.; Chiew, Y.M. Flow characteristics around a circular cylinder subjected to vortex-induced vibration near a plane boundary. J. Fluids Struct. 2016, 65, 257–277. [Google Scholar] [CrossRef]
- Guan, D.; Hsieh, S.C.; Chiew, Y.M.; Low, Y.M. Experimental study of scour around a forced vibrating pipeline in quiescent water. Coast. Eng. 2019, 143, 1–11. [Google Scholar] [CrossRef]
- Guan, D.; Hsieh, S.C.; Chiew, Y.M.; Low, Y.M.; Wei, M. Local scour and flow characteristics around pipeline subjected to vortex-induced vibrations. J. Hydraul. Eng. ASCE 2020, 146, 04019048. [Google Scholar] [CrossRef]
- Tofany, N.; Low, Y.M.; Lee, C.-H.; Chiew, Y.M. Two-phase flow simulation of scour beneath a vibrating pipeline during the tunnel erosion stage. Phys. Fluids 2019, 31, 113302. [Google Scholar] [CrossRef]
- Hamill, G.A. Characteristics of the Screw Wash of a Manoeuvring Ship and the Resulting Bed Scour. Ph.D. Thesis, Queen’s University Belfast (United Kingdom), Belfast, UK, 1987. [Google Scholar]
- Wei, M.; Chiew, Y.M. Characteristics of propeller jet flow within developing scour holes around an open quay. J. Hydraul. Eng. 2018, 144, 04018040. [Google Scholar] [CrossRef]
- Lai, J.S.; Chang, F.J. Physical modeling of hydraulic desiltation in Tapu Reservoir. Int. J. Sediment Res. 2001, 16, 363–379. [Google Scholar]
- Wang, H.W.; Kondolf, G.M.; Desiree, T.; Kuo, W.C. Sediment management in Taiwan’s reservoirs and barriers to implementation. Water 2018, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Bormann, N.E.; Julien, P.Y. Scour downstream of grade-control structures. J. Hydraul. Eng. ASCE 1991, 117, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.W.; Lai, J.S. Sustain reservoir useful life by flushing sediment. Int. J. Sediment Res. 1996, 11, 10–17. [Google Scholar]
- Kondolf, G.M.; Gao, Y.X.; Annandale, G.W.; Morris, G.L.; Jiang, E.H.; Zhang, J.H.; Cao, Y.T.; Carling, P.; Fu, K.D.; Guo, Q.C.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Annandale, G.W.; Morris, G.L.; Karki, P. Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower; World Bank Group: Washington, DC, USA, 2016. [Google Scholar]
- Stähly, S.; Franca, M.J.; Robinson, C.T.; Schleiss, A.J. Sediment replenishment combined with an artificial flood improves river habitats downstream of a dam. Nat. Sci. Rep. 2019, 9, 5176. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Kikui, M.; Ishida, H.; Sumi, T. Reservoir sedimentation management by coarse sediment replenishment below dams. In Proceedings of the Ninth International Symposium on River Sedimentation, Yichang, China, 18–21 October 2004; pp. 1070–1078. [Google Scholar]
- Sumi, T.; Kantoush, S.A. Sediment replenishing measures for revitalization of Japanese rivers below dams. In Proceedings of the 34th IAHR World Congress, Brisbane, Australia, 26 June–1 July 2011; pp. 2838–2846. [Google Scholar]
- Ock, G.; Sumi, T.; Takemon, Y. Sediment replenishment to downstream reaches below dams: Implementation perspectives. Hydrol. Res. Lett. 2003, 7, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Battisacco, E.; Franca, M.J.; Schleiss, A.J. Sediment replenishment: Influence of the geometrical configuration on the morphological evolution of channel-bed. Water Resour. Res. 2016, 52, 8879–8894. [Google Scholar] [CrossRef]
- Kondolf, G.M. Sediment management at the river-basin scale: Challenges and opportunities. In Proceedings of the 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, 9–12 April 2019. [Google Scholar]
- Chavan, R.; Gualtieri, P.; Kumar, B. Turbulent flow structures and scour hole characteristics around circular bridge piers over non-uniform sand bed channels with downward seepage. Water 2019, 11, 1580. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Lam, W.H.; Zhang, T.; Sun, C.; Hamill, G. Scour induced by single and twin propeller jets. Water 2019, 11, 1097. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Liu, J.; Chiew, Y.-M.; Zhou, Y. Scour evolution downstream of submerged weirs in clear water scour conditions. Water 2019, 11, 1746. [Google Scholar] [CrossRef] [Green Version]
- Lee, F.-Z.; Lai, J.-S.; Guo, W.-D.; Sumi, T. Scouring of replenished sediment through reservoir flood discharge affects suspended sediment concentrations at downstream river water intake. Water 2019, 11, 1998. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-B.; Lin, T.-K.; Chang, C.-C.; Huang, C.-W.; Chen, B.-T.; Lai, J.-S.; Chang, K.-C. Visible light communication system for offshore wind turbine foundation scour early warning monitoring. Water 2019, 11, 1486. [Google Scholar] [CrossRef] [Green Version]
- Link, O.; Mignot, E.; Roux, S.; Camenen, B.; Escauriaza, C.; Chauchat, J.; Brevis, W.; Manfreda, S. Scour at bridge foundations in supercritical flows: An analysis of knowledge gaps. Water 2019, 11, 1656. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wang, L.; Nie, R.; Yang, K.; Liu, X. Case study: Model Test on the effects of grade control datum drop on the upstream bed morphology in Shiting River. Water 2019, 11, 1898. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, A.; Chauchat, J.; Bonamy, C.; Nagel, T. Two-phase flow simulation of tunnel and lee-wake erosion of scour below a submarine pipeline. Water 2019, 11, 1727. [Google Scholar] [CrossRef] [Green Version]
- Quezada, M.; Tamburrino, A.; Niño, Y. Numerical study of the hydrodynamics of waves and currents and their effects in pier scouring. Water 2019, 11, 2256. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Lam, W.H.; Lam, S.S.; Dai, M.; Hamill, G. Temporal evolution of seabed scour induced by darrieus-type tidal current turbine. Water 2019, 11, 896. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wei, K.; Shen, Z.; Xiang, Q. Experimental investigation of local scour protection for cylindrical bridge piers using anti-scour collars. Water 2019, 11, 1515. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Cheng, N.-S.; Chiew, Y.-M.; Yang, F. Vortex evolution within propeller induced scour hole around a vertical quay wall. Water 2019, 11, 1538. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.; Balachandar, R.; Bolisetti, T. Examination of blockage effects on the progression of local scour around a circular cylinder. Water 2019, 11, 2631. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Melville, B.W.; Macky, G.H.; Shamseldin, A.Y. Local scour at complex bridge piers in close proximity under clear-water and live-bed flow regime. Water 2019, 11, 1530. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiew, Y.-M.; Lai, J.-S.; Link, O. Experimental, Numerical and Field Approaches to Scour Research. Water 2020, 12, 1749. https://doi.org/10.3390/w12061749
Chiew Y-M, Lai J-S, Link O. Experimental, Numerical and Field Approaches to Scour Research. Water. 2020; 12(6):1749. https://doi.org/10.3390/w12061749
Chicago/Turabian StyleChiew, Yee-Meng, Jihn-Sung Lai, and Oscar Link. 2020. "Experimental, Numerical and Field Approaches to Scour Research" Water 12, no. 6: 1749. https://doi.org/10.3390/w12061749
APA StyleChiew, Y. -M., Lai, J. -S., & Link, O. (2020). Experimental, Numerical and Field Approaches to Scour Research. Water, 12(6), 1749. https://doi.org/10.3390/w12061749