Indirect Impact Assessment of Pluvial Flooding in Urban Areas Using a Graph-Based Approach: The Mexico City Case Study
Abstract
:1. Introduction
- to set up of a simplified hydrological and hydraulic model of the main urban drainage system to estimate the hazard in terms of flood area extension and water levels;
- to use the graph representation of a system as the basis for assessing higher-order impacts and cascading effects for different return periods (T), based on the propagation of impacts along graph links; and
- to illustrate how different impact mitigation measures can be formulated based on systemic information provided the analysis of graph properties, taking into account indirect impacts.
2. Methodology
2.1. Hazard Modelling
2.2. Graph Construction
2.3. Impact Assessment
3. Application: Mexico City
3.1. Description of the Application
3.1.1. Hazard Simulation
3.1.2. Network Conceptualization and Graph Construction
3.1.3. Impact Analysis
3.2. Flood Hazard and Impact Results
3.3. Mitigation Scenarios
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Adikari, Y.; Yoshitani, J. Global Trends in Water-Related Disasters: An Insight for Policymakers—The United Nations World Water Assessment Programme; The United Nations Educational, Scientific and Cultural Organization: Paris, France, 2009. [Google Scholar]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S.; Kundzewicz, Z.; Nishijima, A. Freshwater resources. Clim. Chang. 2014 Impacts Adapt. Vulnerability Part A Glob. Sect. Asp. 2015, 229–270. Available online: https://scholarbank.nus.edu.sg/handle/10635/133175 (accessed on 16 June 2020).
- Cramer, W.; Yohe, G.W.; Auffhammer, M.; Huggel, C.; Molau, U.; Da Silva Dias, M.A.F.; Solow, A.; Stone, D.A.; Tibig, L.; Leemans, R.; et al. Detection and attribution of observed impacts. Clim. Chang. 2014 Impacts Adapt. Vulnerability Part A Glob. Sect. Asp. 2015, 979–1038. Available online: https://www.zora.uzh.ch/id/eprint/105700/1/2014_HuggelC_WGIIAR5-Chap18_FINAL%20.pdf (accessed on 16 June 2020).
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Kreibich, H.; Müller, M.; Thieken, A.H.; Merz, B. Flood precaution of companies and their ability to cope with the flood in August 2002 in Saxony, Germany. Water Resour. Res. 2007, 43, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414–415, 539–549. [Google Scholar] [CrossRef]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.J.H.; Ward, P.J. Science of the Total Environment Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef]
- Grossi, P.; Kunreuther, H. Catastrophe Modeling: A New Approach to Managing Risk; Catastrophe Modeling; Kluwer Academic Publishers: Boston, MA, USA, 2005; Volume 25, ISBN 0-387-23082-3. [Google Scholar]
- Balbi, S.; Giupponi, C.; Gain, A.; Mojtahed, V.; Gallina, V.; Torresan, S.; Marcomini, A. The KULTURisk Framework (KR-FWK): A conceptual framework for comprehensive assessment of risk prevention measures—Project deliverable 1.6. SSRN Electron. J. 2010. [Google Scholar] [CrossRef]
- DEFRA (Department for Environment Food and Rural Affairs Flood Management Division). Surface Water Management Plan Technical Guidance; DEFRA: London, UK, 2010.
- Parker, D.J.; Priest, S.J.; Mccarthy, S.S. Surface water flood warnings requirements and potential in England and Wales. Appl. Geogr. 2011, 31, 891–900. [Google Scholar] [CrossRef]
- SEPA. Planning Guidance Strategic Flood Risk Assessment: SEPA Technical Guidance to Support Development Planning; SEPA: Stirling, Scotland, 2015; pp. 1–21. [Google Scholar]
- Pitt, M. The Pitt Review: Learning Lessons from the 2007 Floods; Cabinet Office: London, UK, 2008.
- Ochoa-Rodríguez, S. Urban Pluvial FLood Modelling: Current Theory and Practive. Available online: https://www.raingain.eu/sites/default/files/wp3_review_document_0.pdf (accessed on 16 June 2020).
- James, W.; Rossman, L.A.; James, W.R.C. User’s Guide to SWMM5, 13th ed.; CHI: Guelph, ON, Canada, 2010; ISBN 9780980885330. [Google Scholar]
- CH2M Flood Modeller Suite. Available online: https://www.floodmodeller.com/ (accessed on 16 June 2020).
- DHI Mike 2020. Available online: https://www.mikepoweredbydhi.com/mike-2020 (accessed on 16 June 2020).
- Aronica, G.T.; Candela, A.; Fabio, P.; Santoro, M. Estimation of flood inundation probabilities using global hazard indexes based on hydrodynamic variables. Phys. Chem. Earth 2012, 42–44, 119–129. [Google Scholar] [CrossRef]
- Löwe, R.; Urich, C.; Sto, N.; Mark, O.; Deletic, A.; Arnbjerg-nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Russo, B.; Sunyer, D.; Velasco, M.; Djordjevic’, S. Analysis of extreme fl ooding events through a calibrated 1D/2D coupled model: The case of Barcelona (Spain). J. Hydroinform. 2015, 17, 473–491. [Google Scholar] [CrossRef]
- Galuppini, G.; Quintilliani, C.; Arosio, M.; Barbero, G.; Ghilardi, P.; Manenti, S.; Petaccia, G.; Todeschini, S.; Ciaponi, C.; Martina, M.L.V.; et al. A unified framework for the assessment of multiple source urban flash flood hazard: The case study of Monza, Italy. Urban Water J. 2020, 17, 35–77. [Google Scholar] [CrossRef]
- Penning-rowsell, E.; Johnson, C.; Tunstall, S.; Morris, J.; Chatterton, J.; Green, C.; Koussela, K.; Fernandez-bilbao, A. The Benefits of Flood and Coastal Risk Management: A Handbook of Assessment Techniques; Middlesex University Press: London, UK, 2005; ISBN 1 904750 51 6. [Google Scholar]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Arrighi, C.; Brugioni, M.; Castelli, F.; Franceschini, S.; Mazzanti, B. Urban micro-scale flood risk estimation with parsimonious hydraulic modelling and census data. Nat. Hazards Earth Syst. Sci. 2013, 13, 1375–1391. [Google Scholar] [CrossRef] [Green Version]
- Lüdtke, S.; Schröter, K.; Steinhausen, M.; Weise, L.; Figueiredo, R.; Kreibich, H. A Consistent Approach for Probabilistic Residential Flood Loss Modeling in Europe. Water Resour. Res. 2019, 55, 10616–10635. [Google Scholar] [CrossRef] [Green Version]
- Sieg, T.; Schinko, T.; Vogel, K.; Mechler, R.; Merz, B.; Kreibich, H. Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, Y. Economic modeling for disaster impact analysis: Past, present, and future. Econ. Syst. Res. 2007, 19, 115–124. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Nat. Hazards 2016, 82, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Arosio, M.; Martina, M.L.V.; Figueiredo, R. The whole is greater than the sum of its parts: A holistic graph-based assessment approach for natural hazard risk of complex systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Chaussard, E.; Cabral-cano, E. Magnitude and extent of land subsidence in central Mexico revealed by regional InSAR ALOS time-series survey. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual; National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 2010.
- Tsihrintzis, V.; Hamid, R. Runo quality prediction from small urban catchments using SWMM. Hydrol. Proc. 1998, 12, 311–329. [Google Scholar] [CrossRef]
- Guo, J.C.Y.; Urbonas, B. Conversion of Natural Watershed to Kinematic Wave Cascading Plane. J. Hydrol. Eng. 2009, 14, 839–846. [Google Scholar] [CrossRef]
- Burszta-Adamiak, E.; Mrowiec, M. Modelling of Green roofs’ hydrologic performance using EPA’s SWMM. Water Sci. Technol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and verification of SWMM for low impact development. J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
- Chaudhry, M.H. Open-Channel Flow; Springer: New York, NY, USA, 2008; ISBN 978-0-387-30174-7. [Google Scholar]
- Meng, X.; Zhang, M.; Wen, J.; Du, S.; Xu, H.; Wang, L.; Yang, Y. A simple GIS-based model for urban rainstorm inundation simulation. Sustainability 2019, 11, 2830. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Biggs, N.L.; Lloyd, E.K.; Wilson, R.J. Graph Theory 1736-1936; Clarendon Press: Oxford, UK, 1976; ISBN 0198539169. [Google Scholar]
- Barabasi, A.L. Network Science. Available online: http://networksciencebook.com/ (accessed on 16 June 2020).
- Newman, M.E.J. Networks An Introduction; Oxford University Press: New York, NY, USA, 2010; ISBN 9780199206650. [Google Scholar]
- Rinaldi, S.M.; Peerenboom, J.P.; Kelly, T.K. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 2001, 21, 11–25. [Google Scholar]
- Dottori, F.; Figueiredo, R.; Martina, M.; Molinari, D.; Scorzini, A.R. INSYDE: A synthetic, probabilistic flood damage model based on explicit cost analysis. Nat. Hazards Earth Syst. Sci. 2016, 16, 2577–2591. [Google Scholar] [CrossRef] [Green Version]
- Campillo, G.; Dickson, E.; Leon, C.; Goicoechea, A. Urban Risk Assessment Mexico City Metropolitan Area, Mexico; World Bank: New York, NY, USA, 2011. [Google Scholar]
- Tellman, B.; Bausch, J.C.; Eakin, H.; Anderies, J.M.; Mazari-Hiriart, M.; Manuel-Navarrete, D.; Redman, C.L. Adaptive pathways and coupled infrastructure: Seven centuries of adaptation to water risk and the production of vulnerability in Mexico City. Ecol. Soc. 2018, 23, art1. [Google Scholar] [CrossRef] [Green Version]
- Odeh, T.; Mohammad, A.H.; Hussein, H.; Ismail, M.; Almomani, T. Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environ. Earth Sci. 2019, 78, 40. [Google Scholar] [CrossRef] [Green Version]
- Amaro, P. Proposal of an Approach for Estimating Relationships I-d-Tr from 24 Hours Rainfalls; Universidad Nacional Autónoma de México (UNAM): Mexico City, Mexico, 2005. [Google Scholar]
- Artina, S.; Calenda, G.; Calomino, F.; Loggia, G.L.; Modica, C.; Paoletti, A.; Papiri, S.; Rasulo, G.; Veltri, P. Sistemi di Fognatura. Manuale di Progettazione; Hoepli: Milano, Italy, 1997. [Google Scholar]
- Torres, M.A.; Reinoso, E.; Jaimes, M.A.; De Ingeniería, I.; México, D.F. Flood Loss Scenarios in Mexico City to Possible Failures of the Main Deep Drainage System; Universidad Nacional Autónoma de México (UNAM): Mexico City, Mexico, 2012. [Google Scholar]
- Pregnolato, M.; Ford, A.; Robson, C.; Glenis, V.; Barr, S.; Dawson, R. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks. R. Soc. Open Sci. 2016, 3, 160023. [Google Scholar] [CrossRef] [Green Version]
- Nepusz, T.; Csard, G. Package “igraph”—Network Analysis and Visualization. Available online: https://cran.r-project.org/web/packages/igraph/igraph.pdf (accessed on 16 June 2020).
- Carrera, L.; Standardi, G.; Bosello, F.; Mysiak, J. Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling. Environ. Model. Softw. 2015, 63, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Borse, R.H.; Behravesh, C.B.; Dumanovsky, T.; Zucker, J.R.; Swerdlow, D.; Edelson, P.; Choe-Castillo, J.; Meltzer, M.I. Closing schools in response to the 2009 pandemic influenza a H1N1 virus in New York City: Economic impact on households. Clin. Infect. Dis. 2011, 52, 168–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisonni, C.G. Rasulo Metodi per determinare le massime portate pluviali. In Sistemi di Fognatura. Manuale di Progettazione; Hoepli: Milano, Italy, 1997; p. 966. ISBN 9788578110796. [Google Scholar]
- Mendes, P.; Lopes, J.G.; De Brito, J.; Feiteira, J. Waterproofing of concrete foundations. J. Perform. Constr. Facil. 2014, 28, 242–249. [Google Scholar] [CrossRef]
- Tong, Z. Research on Waterproof Technology of Construction Engineering. In Proceedings of the International Conference on Chemical, Material and Food Engineering, Kunming, China, 25–26 July 2015; Atlantis Press: Paris, France, 2015; pp. 500–502. [Google Scholar]
- Ginda, G. How to help the choice of waterproof insulation to be sustainable? In Proceedings of the 13th International Conference “Modern Building Materials, Structures and Technique”, Vilnius, Lithuania, 16–17 May 2019. [Google Scholar]
- Figueiredo, R.; Romão, X.; Paupério, E. Flood risk assessment of cultural heritage at large spatial scales: Framework and application to mainland Portugal. J. Cult. Herit. 2020, 43, 163–174. [Google Scholar] [CrossRef]
- Sadique, M.Z.; Adams, E.J.; Edmunds, W.J. Estimating the costs of school closure for mitigating an influenza pandemic. BMC Public Health 2008, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Network Conceptualization | Type of Nodes | Number of Elements | Service Provided | Destination of the Service |
---|---|---|---|---|
17 | Transportation | Fire Stations, Schools, Hospitals, Fuel Stations, and Blocks | ||
11 | Recovery | Schools, Hospitals, Fuel Stations, and Blocks | ||
103 | Power | Blocks | ||
39 | Healthcare | Blocks | ||
130 | Education | Blocks | ||
64,282 | - | - |
Scenario | RM [%] |
---|---|
M2 + M1 | 77.93 |
M2 + M3 | 74.74 |
M2 | 53.75 |
M1 + M3 | 45.16 |
M1 | 24.18 |
M3 | 20.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arosio, M.; Martina, M.L.V.; Creaco, E.; Figueiredo, R. Indirect Impact Assessment of Pluvial Flooding in Urban Areas Using a Graph-Based Approach: The Mexico City Case Study. Water 2020, 12, 1753. https://doi.org/10.3390/w12061753
Arosio M, Martina MLV, Creaco E, Figueiredo R. Indirect Impact Assessment of Pluvial Flooding in Urban Areas Using a Graph-Based Approach: The Mexico City Case Study. Water. 2020; 12(6):1753. https://doi.org/10.3390/w12061753
Chicago/Turabian StyleArosio, Marcello, Mario L. V. Martina, Enrico Creaco, and Rui Figueiredo. 2020. "Indirect Impact Assessment of Pluvial Flooding in Urban Areas Using a Graph-Based Approach: The Mexico City Case Study" Water 12, no. 6: 1753. https://doi.org/10.3390/w12061753
APA StyleArosio, M., Martina, M. L. V., Creaco, E., & Figueiredo, R. (2020). Indirect Impact Assessment of Pluvial Flooding in Urban Areas Using a Graph-Based Approach: The Mexico City Case Study. Water, 12(6), 1753. https://doi.org/10.3390/w12061753