Understanding Future Water Challenges in a Highly Regulated Indian River Basin—Modelling the Impact of Climate Change on the Hydrology of the Upper Narmada
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Basin Climatology
3.2. Simulated Scenario Discharge
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madhusoodhanan, C.G.; Sreeja, K.G.; Eldho, T.I. Climate change impact assessments on the water resources of India under extensive human interventions. Ambio 2016, 45, 725–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mall, R.K.; Gupta, A.; Singh, R.; Singh, R.S.; Rathore, L.S. Water resources and climate change: An Indian perspective. Curr. Sci. 2006, 90, 1610–1626. [Google Scholar]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian river basins. Curr. Sci. 2006, 346–353. [Google Scholar]
- Gupta, H.; Chakrapani, G.J. Temporal and spatial variations in water flow and sediment load in Narmada River Basin, India: Natural and man-made factors. Environ. Geol. 2005, 48, 579–589. [Google Scholar] [CrossRef]
- Government of India. National Water Policy; Department of Water Resources, Government of India: New Delhi, India, 2012.
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Sahany, S.; Salunke, P. CMIP5 vs. CORDEX over the Indian region: How much do we benefit from dynamical downscaling? Theor. Appl. Climatol. 2017, 133, 1–9. [Google Scholar] [CrossRef]
- IPCC AR5 Climate Change 2013: The Physical Science Basis—IPCC. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 20 April 2020).
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim. Extrem. 2018, 20, 45–53. [Google Scholar] [CrossRef]
- SMHI Climate Change Is Affecting Water Supply in India. Available online: https://www.smhi.se/en/research/research-news/climate-change-is-affecting-water-supply-in-india-1.34468 (accessed on 11 June 2020).
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Udmale, P.; Ichikawa, Y.; Manandhar, S.; Ishidaira, H.; Kiem, A.S. Farmers׳ perception of drought impacts, local adaptation and administrative mitigation measures in Maharashtra State, India. Int. J. Disaster Risk Reduct. 2014, 10, 250–269. [Google Scholar] [CrossRef] [Green Version]
- Asokan, S.M.; Dutta, D. Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions. Hydrol. Process. 2008, 22, 3589–3603. [Google Scholar] [CrossRef]
- Saleth, R.M. Water scarcity and climatic change in India: The need for water demand and supply management. Hydrol. Sci. J. 2011, 56, 671–686. [Google Scholar] [CrossRef]
- Pathak, H.; Pramanik, P.; Khanna, M.; Kumar, A. Climate change and water availability in Indian agriculture: Impacts and adaptation. Indian J. Agric. Sci. 2014, 84, 671–679. [Google Scholar]
- Simonovic, S.P. World Water Resources at the Beginning of the Twenty-First Century; University Press: Cambridge, UK, 2012. [Google Scholar]
- Loch, A.; Adamson, D.; Dumbrell, N.P. The fifth stage in water management: Policy lessons for water governance. Water Resour. Res. 2020, 56, e2019WR026714. [Google Scholar] [CrossRef] [Green Version]
- Delorit, J.; Gonzalez Ortuya, E.C.; Block, P. Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile. Hydrol. Earth Syst. Sci. 2017, 21, 4711–4725. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.; Forootan, E.; van Dijk, A.I.J.M.; Müller Schmied, H.; Crosbie, R.S.; Kusche, J.; Döll, P. Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model. Remote Sens. Environ. 2018, 204, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, C.; Parry, S.; Hannaford, J.; Clark, D.B.; Hagemann, S.; Voss, F. How Well Do Large-Scale Models Reproduce Regional Hydrological Extremes in Europe? J. Hydrometeor 2011, 12, 1181–1204. [Google Scholar] [CrossRef] [Green Version]
- Kauffeldt, A.; Wetterhall, F.; Pappenberger, F.; Salamon, P.; Thielen, J. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environ. Model. Softw. 2016, 75, 68–76. [Google Scholar] [CrossRef]
- Pappenberger, F.; Thielen, J.; Del Medico, M. The impact of weather forecast improvements on large scale hydrology: Analysing a decade of forecasts of the European Flood Alert System. Hydrol. Process. 2011, 25, 1091–1113. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS–global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F.; Van Huijgevoort, M.H.J.; Van Lanen, H.A.J. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 8375–8424. [Google Scholar] [CrossRef]
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Zabalza-Martínez, J.; Borràs, G.; López-Moreno, J.I.; Pla, E.; Pascual, D.; Savé, R.; Biel, C.; Funes, I.; Azorin-Molina, C.; et al. Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. J. Hydrol. Reg. Stud. 2017, 12, 13–32. [Google Scholar] [CrossRef]
- Anis, R.; Razavi, M.; Wheater, S. Howard An integrated modelling framework for regulated river systems in Land Surface Hydrological Models. EGU Gen. Assem. Conf. Abstr. 2017, 19, 9753. [Google Scholar]
- Johnston, R.; Smakhtin, V. Hydrological Modeling of Large river Basins: How Much is Enough? Water Resour. Manag. 2014, 28, 2695–2730. [Google Scholar] [CrossRef] [Green Version]
- Müller Schmied, H.; Eisner, S.; Franz, D.; Wattenbach, M.; Portmann, F.T.; Flörke, M.; Döll, P. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. 2014, 18, 3511–3538. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.J.; Cloke, H.L. Comment on “Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water” by Eric F. Wood et al. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Dirmeyer, P.A.; Hu, Z.-Z.; Gao, X.; Zhao, M. Evaluation of the Second Global Soil Wetness Project soil moisture simulations: Sensitivity to external meteorological forcing. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Van Huijgevoort, M.H.; Van Loon, A.F.; Hanel, M.; Haddeland, I.; Horvát, O.; Koutroulis, A.; Machlica, A.; Weedon, G.; Fendeková, M.; Tsanis, I.; et al. Simulation of Low Flows and Drought Events in WATCH Test Basins: Impact of Different Climate Forcing Datasets; Technical Report No. 26, European Commission Sixth Framework Programme; 2011. [Google Scholar]
- Wetterhall, F.; Pappenberger, F.; Alfieri, L.; Cloke, H.L.; Thielen-del Pozo, J.; Balabanova, S.; Daňhelka, J.; Vogelbacher, A.; Salamon, P.; Carrasco, I.; et al. HESS Opinions "Forecaster priorities for improving probabilistic flood forecasts. Hydrol. Earth Syst. Sci. 2013, 17, 4389–4399. [Google Scholar] [CrossRef] [Green Version]
- De Couet, T.; Maurer, T. Surface freshwater fluxes into the world oceans. Glob. Runoff Data Cent. Fed. Inst. Hydrol. (BfG) 2009, 2596–2614. [Google Scholar]
- Wada, Y.; van Beek, L.P.H.; Wanders, N.; Bierkens, M.F.P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 2013, 8, 034036. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, R.D.; Sharma, K.D. Water resources of India. Curr. Sci. 2005, 89, 798–811. [Google Scholar]
- Anand, J.; Gosain, A.K.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018, 16, 32–53. [Google Scholar] [CrossRef]
- Government of India. Ministry of Water Resources Narmada Basin; Government of India: New Delhi, India, 2014.
- Gupta, N.; Pandey, P.; Hussain, J. Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Sci. 2017, 31, 11–23. [Google Scholar] [CrossRef]
- Jain, S.K.; Storm, B.; Bathurst, J.C.; Refsgaard, J.C.; Singh, R.D. Application of the SHE to catchments in India Part Field experiments and simulation studies with the SHE on the Kolar subcatchment of the Narmada River. J. Hydrol. 1992, 140, 25–47. [Google Scholar] [CrossRef]
- Khare, D.; Patra, D.; Mondal, A.; Kundu, S. Impact of landuse/land cover change on run-off in the catchment of a hydro power project. Appl. Water Sci. 2017, 7, 787–800. [Google Scholar] [CrossRef]
- Raje, D.; Priya, P.; Krishnan, R. Macroscale hydrological modelling approach for study of large scale hydrologic impacts under climate change in Indian river basins. Hydrol. Process. 2014, 28, 1874–1889. [Google Scholar] [CrossRef]
- Google Map of India. Available online: https://www.google.com/maps/ (accessed on 20 April 2020).
- Meigh, J.R.; McKenzie, A.A.; Sene, K.J. A grid-based approach to water scarcity estimates for eastern and southern Africa. Water Resour. Manag. 1999, 13, 85–115. [Google Scholar] [CrossRef]
- Dumont, E.; Johnson, A.C.; Keller, V.D.J.; Williams, R.J. Nano silver and nano zinc-oxide in surface waters-exposure estimation for Europe at high spatial and temporal resolution. Environ. Pollut. 2015, 196, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.J. The probability-distributed principle and runoff production at point and basin scales. Hydrol. Sci. J. 1985, 30, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.J. The PDM rainfall-runoff model. Hydrol. Earth Syst. Sci. 2007, 11, 483–499. [Google Scholar] [CrossRef]
- Calder, I.R. Evaporation in the Uplands; Wiley: Chichester, UK, 1990. [Google Scholar]
- NASA SRTM Elevation Data. Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 23 April 2020).
- USGS Global Land Cover Characterization (GLCC) Digital Object Identifier (DOI) Number: /10.5066/F7GB230D. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects (accessed on 21 April 2020).
- Food and Agricultural Organization (FAO) Digital Soil Map of the World (DSMW). Land & Water-Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1026564/ (accessed on 26 April 2020).
- Government of India. Department of Water Resources India-WRIS. Available online: http://indiawris.gov.in/wris/#/DataDownload (accessed on 23 April 2020).
- Pai, D.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar]
- National Institute of Hydrology. Development of Operation Policy for Tawa Dam; National Institute of Hydrology: Roorkee, India, 1997.
- Goel, M.K. Reservoir Sedimentation Study of Bargi Dam using Satellitte Data, Roorkee: National Institute of Hydrology; National Institute of Hydrology: Roorkee, India, 2000.
- Government of India. Indian Population Census; Ministry of Home Affairs, Government of India: New Delhi, India, 2011.
- Food and Agricultural Organization AQUASTAT. Available online: http://www.fao.org/nr/water/aquastat/main/index.stm (accessed on 21 April 2020).
- Doorenbos, J.; Pruitt, W.O. Guidelines for prediction of crop water requirements. FAO Irrig. Drain. Pap. 1977, 24, 144. [Google Scholar]
- National Institute of Hydrology. Agricultural practices in the Upper Narmada-communication from NIH; National Institute of Hydrology: Roorkee, India, 2018.
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- National Institute of Hydrology. Historic Operations for the Tawa, Bargi and Barna Reservoirs-Collected from Field Organisations; National Institute of Hydrology: Roorkee, India, 2018.
- Government of India. Indian Livestock Census; Ministry of Agriculture & Farmers Welfare, Government of India: New Delhi, India, 2007.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Jain, S.K.; Agarwal, P.K.; Singh, V.P. Hydrology and Water Resources of India; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Rajeevan, M.; Bhate, J.; Kale, J.D.; Lal, B. High resolution daily gridded rainfall data for the Indian region: Analysis of break and active. Curr. Sci. 2006, 91, 296–306. [Google Scholar]
- Henriksen, H.J.; Troldborg, L.; Nyegaard, P.; Sonnenborg, T.O.; Refsgaard, J.C.; Madsen, B. Methodology for construction, calibration and validation of a national hydrological model for Denmark. J. Hydrol. 2003, 280, 52–71. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Thompson, J.R.; Flower, R.J. Hydrological impacts of climate change on rice cultivated riparian wetlands in the Upper Meghna River Basin (Bangladesh and India). Hydrol. Sci. J. 2020, 65, 33–56. [Google Scholar] [CrossRef]
- Thompson, J.R.; Crawley, A.; Kingston, D.G. Future river flows and flood extent in the Upper Niger and Inner Niger Delta: GCM-related uncertainty using the CMIP5 ensemble. Hydrol. Sci. J. 2017, 62, 2239–2265. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Mishra, V. Climate change impacts on streamflow in India. In Climate Change and Water Resources in India, Edition: 24th Conference of the Parties (COP24) to the United Nations Framework Convention on Climate Change (UNFCCC); 2018; pp. 39–52. Available online: https://www.researchgate.net/profile/Harsh_Shah22/publication/330158561_Climate_Change_Impacts_on_Streamflow_in_India/links/5c303a08299bf12be3ae4d64/Climate-Change-Impacts-on-Streamflow-in-India.pdf (accessed on 17 June 2020).
- Thomas, T.; Gunthe, S.S.; Ghosh, N.C.; Sudheer, K.P. Analysis of monsoon rainfall variability over Narmada basin in central India: Implication of climate change. J. Water Clim. Chang. 2015, 6, 615. [Google Scholar] [CrossRef]
- Shah, Z.; Kumar, M.D. In the midst of the large dam controversy: Objectives, criteria for assessing large water storages in the developing world. Water Resour. Manag. 2008, 22, 1799–1824. [Google Scholar] [CrossRef] [Green Version]
- Joy, K.J.B. Water Conflicts in India: A Million Revolts in the Making; Routledge: New Delhi, India, 2008. [Google Scholar]
- Stanzel, P.; Kling, H.; Bauer, H. Climate change impact on West African rivers under an ensemble of CORDEX climate projections. Clim. Serv. 2018, 11, 36–48. [Google Scholar] [CrossRef]
- Turner, A.G. Annamalai (2012) H Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Menon, A.; Levermann, A.; Schewe, J.; Lehmann, J.; Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dynam. 2013, 4, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Kitoh, A.; Endo, H.; Krishna Kumar, K.; Cavalcanti, I.F.A.; Goswami, P.; Zhou, T. Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos. 2013, 118, 3053–3065. [Google Scholar] [CrossRef] [Green Version]
- Sperber, K.R.; Annamalai, H.; Kang, I.S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Semwal, R.L.; Nautiyal, S.; Sen, K.K.; Rana, U.; Maikhuri, R.K.; Rao, K.S.; Saxena, K.G. Patterns and ecological implications of agricultural land-use changes: A case study from central Himalaya, India. Agric. Ecosyst. Environ. 2004, 102, 81–92. [Google Scholar] [CrossRef]
- Bhagat, R.B. Emerging pattern of urbanisation in India. Econ. Polit Wkly 2011, 46, 10–12. [Google Scholar]
- Sapkota, P.; Bharati, L.; Gurung, P.; Kaushal, N.; Smakhtin, V. Environmentally sustainable management of water demands under changing climate conditions in the Upper Ganges Basin, India. Hydrol. Process. 2013, 27, 2197–2208. [Google Scholar] [CrossRef]
- Tian, H.; Banger, K.; Bo, T.; Dadhwal, V.K. History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Glob. Planet. Chang. 2014, 121, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Seto, K.C.; Emerson, R.; Gorelick, S.M. The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Glob. Environ. Chang. 2013, 23, 229–239. [Google Scholar] [CrossRef]
- Wakode, H.B.; Baier, K.; Jha, R.; Azzam, R. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int. Soil Water Conserv. Res. 2018, 6, 51–62. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Venot, J.P.; Jella, K.; Bharati, L.; George, B.; Biggs, T.; Rao, P.G.; Gumma, M.K.; Acharya, S. Farmers’ adaptation and regional land-use changes in irrigation systems under fluctuating water supply, south India. J. Irrig. Drain. Eng. 2010, 136, 595–609. [Google Scholar] [CrossRef]
- Yadav, V.K.; Padhy, N.P.; Gupta, H.O. Performance evaluation and improvement directions for an Indian electric utility. Energy Policy 2011, 39, 7112–7120. [Google Scholar] [CrossRef]
- Mishra, M.K.; Khare, N.; Agrawal, A.B. Small hydro power in India: Current status and future perspectives. Renew. Sustain. Energy Rev. 2015, 51, 101–115. [Google Scholar] [CrossRef]
- Sharma, N.K.; Tiwari, P.K.; Sood, Y.R. A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power. Renew. Sustain. Energy Rev. 2013, 18, 460–470. [Google Scholar] [CrossRef]
Model Component | Key Inputs | Data Sources/Derivation |
---|---|---|
Topography | Topography | Extracted from SRTM (Shuttle Radar Topography Mission) 90 m resolution DEM (Digital Elevation Model) [49]. |
Land use/vegetation | Land use distribution | USGS LULC map [50]. Reclassified to six land cover types: Forest, Shrub, Water bodies, Wetlands, Bare soil and Grass/cropland. |
Soil | Soil classes | The spatial distribution of six soil classes was specified using a 1 km × 1 km grid based on a georectified and digitised soil map [51]. |
River discharge | Discharge time series | India-WRIS (Water Resources Information System) [52]. |
Catchment meteorology Precipitation and evapotranspiration modules. | Precipitation and Temperature | 0.25° × 0.25° gridded daily precipitation obtained from the IMD (India Meteorological Department) / NCC (National Climate Centre) High Spatial Resolution (0.25° × 0.25°) Long Period (1901–2013) Daily Gridded Rainfall Data Set Over India [53]. |
Artificial influences | Reservoir and lake abstractions/operations, water body dimensions | Relevant information obtained from literature [38,54,55]. |
Population and Domestic consumption | Indian Population Census [56,57]. | |
Irrigated crops | Relevant information obtained from literature [58,59,60]. | |
Water transfers | Relevant information obtained from literature and field surveys [55,61]. | |
Cattle, sheep and goat populations | Indian Livestock Census [62]. |
Dam | River | Year of Completion | Gross Storage Capacity (MCM) |
---|---|---|---|
Bargi | Narmada | 1988 | 3924.8 |
Barna | Barna | 1978 | 539 |
Tawa | Tawa | 1978 | 2312 |
Gauge | River Reach | Catchment Area (km2) |
---|---|---|
Manot | Narmada | 4467 |
Mohgaon | Burhner | 4090 |
Patan | Hiren | 4795 |
Belkheri | Sher | 2903 |
Barmanghat | Narmada | 26,453 |
Gadarwara | Shakkar | 2270 |
Sandia | Narmada | 33,954 |
Hoshangabad | Narmada | 44,548 |
Station | Period | Dv | NSE | r | |
---|---|---|---|---|---|
Manot | Cal: 1990–2000 | 5.72 | 0.95 | 0.97 | |
Val: 2001–2010 | 2.30 | 0.96 | 0.98 | ||
Mohgaon | Cal: 1990–1996 | −0.55 | 0.87 | 0.88 | |
Val: 2001–2010 | −6.7 | 0.90 | 0.95 | ||
Patan | Cal: 1990–2000 | 16.93 | 0.92 | 0.97 | |
Val: 2001–2010 | 17.8 | 0.90 | 0.97 | ||
Belkheri | Cal: 1990–2000 | 11.07 | 0.87 | 0.94 | |
Val: 2001–2010 | 5.2 | 0.80 | 0.89 | ||
Barmanghat | Cal: 1992–2000 | 0.25 | 0.90 | 0.94 | |
Val: 2001–2010 | −6.2 | 0.90 | 0.95 | ||
Gadarwara | Cal: 1990–2000 | 8.60 | 0.92 | 0.96 | |
Val: 2001–2010 | −5.4 | 0.64 | 0.80 | ||
Sandia | Cal: 1990–2000 | 6.73 | 0.92 | 0.96 | |
Val: 2001–2010 | 2.5 | 0.87 | 0.93 | ||
Hoshangabad | Cal: 1990–2000 | 1.16 | 0.93 | 0.97 | |
Val: 2001–2010 | −2.1 | 0.89 | 0.95 | ||
Performance indicator | Excellent | Very good | Fair | Poor | Very poor |
Dv | <5% | 5–10% | 10–20% | 20–40% | >40% |
NSE | >0.85 | 0.65–0.85 | 0.50–0.65 | 0.20–0.50 | <0.20 |
Model Name | Institution |
---|---|
ACCESS1-0 | Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Bureau of Meteorology (BOM), Australia |
bcc-csm1-1 | Beijing Climate Center, China Meteorological Administration |
BNU-ESM | College of Global Change and Earth System Science, Beijing Normal University |
CanESM2 | Canadian Centre for Climate Modelling and Analysis |
CCSM4 | National Center for Atmospheric Research |
CESM1-BGC | Community Earth System Model Contributors |
CNRM-CM5 | Centre National de Recherches Météorologiques/Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique |
CSIRO-Mk3.6.0 | Commonwealth Scientific & Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence |
GFDL-CM3 | NOAA Geophysical Fluid Dynamics Laboratory |
GFDL-ESM2M | |
IPSL-CM5A-LR | Institut Pierre-Simon Laplace |
IPSL-CM5A MR | |
MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology |
MIROC-ESM | |
MIROC-ESM-CHEM | |
MPI-ESM-LR | Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) |
MPI-ESM-MR |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rickards, N.; Thomas, T.; Kaelin, A.; Houghton-Carr, H.; Jain, S.K.; Mishra, P.K.; Nema, M.K.; Dixon, H.; Rahman, M.M.; Horan, R.; et al. Understanding Future Water Challenges in a Highly Regulated Indian River Basin—Modelling the Impact of Climate Change on the Hydrology of the Upper Narmada. Water 2020, 12, 1762. https://doi.org/10.3390/w12061762
Rickards N, Thomas T, Kaelin A, Houghton-Carr H, Jain SK, Mishra PK, Nema MK, Dixon H, Rahman MM, Horan R, et al. Understanding Future Water Challenges in a Highly Regulated Indian River Basin—Modelling the Impact of Climate Change on the Hydrology of the Upper Narmada. Water. 2020; 12(6):1762. https://doi.org/10.3390/w12061762
Chicago/Turabian StyleRickards, Nathan, Thomas Thomas, Alexandra Kaelin, Helen Houghton-Carr, Sharad K. Jain, Prabhash K. Mishra, Manish K. Nema, Harry Dixon, Mohammed M. Rahman, Robyn Horan, and et al. 2020. "Understanding Future Water Challenges in a Highly Regulated Indian River Basin—Modelling the Impact of Climate Change on the Hydrology of the Upper Narmada" Water 12, no. 6: 1762. https://doi.org/10.3390/w12061762
APA StyleRickards, N., Thomas, T., Kaelin, A., Houghton-Carr, H., Jain, S. K., Mishra, P. K., Nema, M. K., Dixon, H., Rahman, M. M., Horan, R., Jenkins, A., & Rees, G. (2020). Understanding Future Water Challenges in a Highly Regulated Indian River Basin—Modelling the Impact of Climate Change on the Hydrology of the Upper Narmada. Water, 12(6), 1762. https://doi.org/10.3390/w12061762