Attribution Analysis on Regional Differentiation of Water Resources Variation in the Yangtze River Basin under the Context of Global Warming
Abstract
:1. Introduction
- systematically investigating the meteoro-hydrological changes in the YRB, especially their phase variation under the context of global warming;
- quantitatively assessing the contribution of climate change and human activities to the changes in runoff and their regional differentiation in the YRB; and
- investigating the potential difference in the impact of human activities on runoff change during the dry and wet periods.
2. Material and Methods
2.1. Study Area
2.2. Available Data
2.3. Analysis of Temporal Variability
2.4. Budyko–Fu Based Hydrological Sensitivity Estimation
3. Results
3.1. Variation of Regional Temperature
3.2. Variation of Precipitation and Potential Evaporation
3.3. Variation of Annual Runoff
3.4. Regional Differentiation of Attribution Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007. Working Group I: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; pp. 235–336. [Google Scholar]
- Asadi, M.E. Effects of Global Climate Change on Water Resources. J. Agric. Meteorol. 2005, 60, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, V.; Hong, S.B.; Small, E.E.; Chen, F. The influence of the land surface on hydrometeorology and ecology: New advances from modeling and satellite remote sensing. Hydrol. Res. 2011, 42, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Zhang, Q.; Liu, J.; Li, X.; Xu, C. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydro. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Esha, R.I.; Imteaz, M.A. Assessing the predictability of MLR models for long-term streamflow using lagged climate indices as predictors: A case study of NSW (Australia). Hydrol. Res. 2018, nh2018171. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Macroscale water fluxes 2. Water and energy supply control of their inter–annual variability. Water Resour. Res. 2002, 38, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Lenderink, G.; Meijgaard, E.V. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Ramı´rez, J.A.; Brown, T.C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett. 2004, 31, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Asharf, A.; Naz, R.; Wahab, A.; Ahmad, B.; Yasin, M.; Saleem, M. Assessment of Landuse Change and Its Impact on Watershed Hydrology Using Remote Sensing and SWAT Modeling Techniques-A Case of Rawal Watershed in Pakistan. JAST 2014, 2, 61–68. [Google Scholar] [CrossRef]
- Zhang, L.L.; Podlasly, C.; Feger, K.H.; Wang, Y.H.; Schwarzel, K. Different land management measures and climate change impacts on the runoff—A simple empirical method derived in a mesoscale catchment on the Loess Plateau. J. Arid Environ. 2015, 120, 42–50. [Google Scholar] [CrossRef]
- Petchprayoon, P.; Blanken, P.D.; Ekkawatpanit, C.; Husseinc, K. Hydrological impacts of land use/land cover change in a large river basin in central–northern Thailand. Int. J. Climatol. 2010, 30, 1917–1930. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal stream flow responses to climate and land–cover changes in the Poyang Lake basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Wang, Y.G.; Werner, A.D.; Xin, P.; Jiang, T.; Barry, D.A. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophys. Res. Lett. 2012, 39, L20402. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Liang, L.; Gong, J.; Jiang, Y.; Wang, H. Spatial-temporal variability characteristics of precipitation structure across the upper Yangtze river basin, China. Adv. Water Sci. 2014, 25, 164–171. (in Chinese). [Google Scholar]
- Tian, Q.; Yang, S. Regional climatic response to global warming: Trends in temperature and precipitation in the Yellow, Yangtze and Pearl River basins since the 1950s. Quatern. Int. 2016, 440, 1–11. [Google Scholar] [CrossRef]
- Li, S.; Hou, W.; Feng, T. Decadal variations of summer dryness/wetness over the middle and lower reaches of the Yangtze River and the evolution of atmospheric circulation in the last 52 years. Chinese J. Atmos. Sci. 2015, 39, 885–900. (in Chinese). [Google Scholar]
- Wang, Y.; Liu, B.; Zhai, J.; Su, B.; Luo, Y.; Zhang, Z. Relationship between potential and actual evaporation in Yangtze River Basin. Adv. Climate Change Res. 2011, 7, 393–399. (in Chinese). [Google Scholar]
- Qi, D.; Li, Y.; Chen, Y.; Zhao, X.; Zhou, C. Changing characteristics and causes of runoff in the source regions of the Yangtze River under the background of climate change. J. Glaciol. Geocryol. 2015, 37, 1075–1086. (in Chinese). [Google Scholar]
- Wei, W.; Chang, Y.; Dai, Z. Streamflow changes of the Changjiang (Yangtze) River in the recent 60 years: Impacts of the East Asian summer monsoon, ENSO, and human activities. Quatern. Int. 2014, 336, 98–107. [Google Scholar] [CrossRef]
- McMahon, T.A.; Finlayson, B.L.; Haines, A.T.; Srikanthan, R. Runoff variability: A global perspective. The influence of climate change and climatic variability on the hydrologic regime and water resources. In Proceedings of the Vancouver Symposium, International Association for Scientific Hydrology, Vancouver, BC, Canada, August 1987; Publication no. 168. pp. 3–11. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; p. 300. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; London: Griffin, London, UK, 1975; p. 202. [Google Scholar]
- Kahya, E.; Kalayci, S. Trend analysis of streamflow in Turkey. J. Hydrol. 2004, 289, 128–144. [Google Scholar] [CrossRef]
- Taylor, W.A. Change-point analysis: A powerful new tool for detecting changes; Taylor Enterprises: Libertyville, IL, USA, 2000; pp. 1–19. [Google Scholar]
- Xu, C.; Gong, L.; Jiang, T.; Chen, D.; Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol. 2006, 327, 81–93. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974; p. 508. [Google Scholar]
- Pike, J.G. The estimation of annual run–off from meteorological data in a tropical climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Fu, B.P. On the calculation of the evaporation from land surface. Sci. Atmos. Sinica 1981, 5, 23–31. [Google Scholar]
- Choudhury, B.J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Wang, D.B.; Tang, Y. A one–parameter Budyko model for water balance captures emergent behavior in Darwinian hydrologic models. Geophys. Res. Lett. 2014, 41, 4569–4577. [Google Scholar] [CrossRef] [Green Version]
- Koster, R.D.; Suarez, M.J. A simple framework for examining the interannual variability of land surface moisture fluxes. J. Clim. 1999, 12, 1911–1917. [Google Scholar] [CrossRef]
- Li, F.; Dong, C.; Tang, Q.; Yan, Y. Influence of East and South Asian summer monsoons on runoff in the monsoon region of East China. Adv. Water Sci. 2016, 27, 349–356. (in Chinese). [Google Scholar]
- Hu, Q.; Feng, S.; Guo, H.; Chen, G.; Jiang, T. Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake, China. J. Hydrol. 2007, 347, 90–100. [Google Scholar] [CrossRef]
- Peterson, T.C.; Golubev, V.S.; Groisman, P.Y. Evaporation losing its strength. Nature 1995, 377, 687–688. [Google Scholar] [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Van Niel, T.G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near–surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416–417, 182–205. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, P.; Lai, C.; Chen, X.; Wu, X.; Zeng, Z.; Li, J. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544, 97–108. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Ye, B.; Liu, F.; Wang, J. Contributions of climate and human activities to changes in runoff of the Yellow and Yangtze rivers from 1950 to 2008. Sci. China: Earth Sci. 2013, 56, 1398–1412. (in Chinese). [Google Scholar] [CrossRef]
- Yang, S.L.; Gao, A.; Hotz, H.M.; Zhu, J.; Dai, S.B.; Li, M. Trends in annual discharge from the Yangtze River to the sea (1865–2004). Hydrol. Sci. J. 2005, 50, 1–836. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wu, X.; Finlayson, B.L.; Webber, M.; Wei, T.; Li, M.; Chen, Z. Variability and trend in the hydrology of the Yangtze River, China: Annual precipitation and runoff. J. Hydrol. 2014, 513, 403–412. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y. Vegetation Change of Yangtze River Basin since 1980s: Pattern and Change Rate. Ecol. Environ. Monit. Three Gorges 2016, 1, 39–43. (in Chinese). [Google Scholar]
- Li, X.; Jia, K.; Tan, H. Census result analysis for groundwater well in Yangtze River Basin. Yangtze River 2014, 45, 97–100. (in Chinese). [Google Scholar]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. J. Hydrol. 2011, 406, 234–244. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Y.; Liu, S.; Lu, A.; Chen, R. Glacier change and its effect on surface runoff in the source regions of the Yangtze and Yellow rivers. J. Nat. Resour. 2003, 18, 595–602. (in Chinese). [Google Scholar]
Gauging Station (Number) | Sub-Basin | Location | Drainage Area (104 km2) | Mean Annual Runoff (108 m3) | Runoff Depth (mm) | Coefficient of Variation (Cv) |
---|---|---|---|---|---|---|
Xiangjiaba (1) | JSJ | 28°38´ N, 104°24´ E | 45.88 | 1432 | 313 | 0.16 |
Gaochang (2) | MJ | 28°48´ N, 104°25´ E | 13.54 | 844 | 623 | 0.12 |
Beibei (3) | JLJ | 29°49´ N, 106°28´ E | 15.67 | 658 | 420 | 0.25 |
Wulong (4) | WJ | 29°19´ N, 107°45´ E | 8.30 | 487 | 586 | 0.20 |
Huangzhuan (5) | HJ | 31°11´ N, 112°33´ E | 14.21 | 465 | 327 | 0.36 |
Xiangtan (6) | DL | 27°52´ N, 112°55´ E | 8.16 | 654 | 802 | 0.24 |
Taojiang (7) | DL | 28°32´ N, 112°07´ E | 2.67 | 226 | 846 | 0.20 |
Taoyuan (8) | DL | 28°54´ N, 111°29´ E | 8.52 | 633 | 743 | 0.18 |
Shimen (9) | DL | 29°35´ N, 111°26´ E | 1.53 | 145 | 947 | 0.27 |
Waizhou (10) | PL | 28°37´ N, 115°49´ E | 8.09 | 682 | 842 | 0.29 |
Lijiadu (11) | PL | 28°12´ N, 116°09´ E | 1.58 | 123 | 778 | 0.38 |
Meigang (12) | PL | 28°25´ N, 116°48´ E | 1.55 | 180 | 1162 | 0.34 |
Hushan (13) | PL | 28°54´ N, 117°18´ E | 0.65 | 70 | 1077 | 0.35 |
Wanjiabu (14) | PL | 28°51´ N, 115°38´ E | 0.36 | 35 | 976 | 0.32 |
Yichang (15) | Mainstream | 30°42´ N, 111°17´ E | 100.55 | 4273 | 425 | 0.11 |
Datong (16) | Mainstream | 30°46´ N, 117°37´ E | 170.54 | 8846 | 519 | 0.13 |
Basins | Hydro-Stations | Periods | |||||||
---|---|---|---|---|---|---|---|---|---|
JSJ | Xiangjiaba | 1960–1993 | 310.48 | - | 1.34 | 0.78 | −0.11 | - | - |
1994–2002 | 334.69 | 24.21 | - | 46.39 | −22.18 | ||||
2003–2013 | 298.44 | −12.03 | - | −23.50 | 11.47 | ||||
1994–2013 | 314.75 | 4.28 | - | 7.95 | −3.67 | ||||
MJ | Gaochang | 1960–1993 | 642.13 | - | 1.51 | 0.81 | −0.23 | - | - |
1994–2002 | 603.01 | −39.12 | - | −32.09 | −7.03 | ||||
2003–2013 | 582.36 | −59.77 | - | −39.90 | −19.86 | ||||
1994–2013 | 591.66 | −50.47 | - | −36.39 | −14.09 | ||||
JLJ | Beibei | 1960–1993 | 446.82 | - | 2.12 | 0.72 | −0.34 | - | - |
1994–2002 | 312.42 | −134.40 | - | −77.54 | −56.86 | ||||
2003–2013 | 424.46 | −22.36 | - | −11.22 | −11.14 | ||||
1994–2013 | 374.04 | −72.78 | - | −40.39 | −32.38 | ||||
WJ | Wulong | 1960–1993 | 594.57 | - | 1.45 | 0.83 | −0.22 | - | - |
1994–2002 | 662.91 | 68.34 | - | 50.13 | 18.21 | ||||
2003–2013 | 498.86 | −95.71 | - | −80.41 | −15.30 | ||||
1994–2013 | 572.68 | −21.89 | - | -21.67 | −0.22 | ||||
HJ | Huangzhuang | 1960–1993 | 353.73 | - | 1.72 | 0.71 | −0.22 | - | - |
1994–2002 | 246.55 | −107.18 | - | −54.12 | −53.06 | ||||
2003–2013 | 327.09 | −26.64 | - | 5.06 | −31.70 | ||||
1994–2013 | 290.84 | −62.89 | - | −21.57 | −41.31 | ||||
DL | 4-stations | 1960–1993 | 783.26 | - | 3.20 | 0.82 | −0.61 | - | - |
1994–2002 | 912.66 | 129.39 | - | 124.94 | 4.45 | ||||
2003–2013 | 730.66 | −52.60 | - | −93.07 | 40.47 | ||||
1994–2013 | 812.56 | 29.30 | - | 5.03 | 24.26 | ||||
PY | 5-stations | 1960–1993 | 867.75 | - | 7.00 | 0.94 | −0.90 | - | - |
1994–2002 | 1067.4 | 199.67 | - | 296.34 | −96.67 | ||||
2003–2013 | 820.18 | −47.58 | - | −53.11 | 5.53 | ||||
1994–2013 | 931.44 | 63.68 | - | 104.15 | −40.46 | ||||
Yangtze | Datong | 1960–1993 | 516.42 | - | 2.14 | 0.73 | −0.35 | - | - |
1994–2002 | 564.19 | 47.76 | - | 48.88 | −1.11 | ||||
2003–2013 | 488.5 | −27.92 | - | −40.86 | 12.93 | ||||
1994–2013 | 522.56 | 6.14 | - | −3.76 | 9.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Zhang, Z.; Xu, C.-Y.; Liu, J. Attribution Analysis on Regional Differentiation of Water Resources Variation in the Yangtze River Basin under the Context of Global Warming. Water 2020, 12, 1809. https://doi.org/10.3390/w12061809
Ye X, Zhang Z, Xu C-Y, Liu J. Attribution Analysis on Regional Differentiation of Water Resources Variation in the Yangtze River Basin under the Context of Global Warming. Water. 2020; 12(6):1809. https://doi.org/10.3390/w12061809
Chicago/Turabian StyleYe, Xuchun, Zengxin Zhang, Chong-Yu Xu, and Jia Liu. 2020. "Attribution Analysis on Regional Differentiation of Water Resources Variation in the Yangtze River Basin under the Context of Global Warming" Water 12, no. 6: 1809. https://doi.org/10.3390/w12061809
APA StyleYe, X., Zhang, Z., Xu, C. -Y., & Liu, J. (2020). Attribution Analysis on Regional Differentiation of Water Resources Variation in the Yangtze River Basin under the Context of Global Warming. Water, 12(6), 1809. https://doi.org/10.3390/w12061809