Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact
Abstract
:1. Introduction
2. Overview
2.1. Groundwater
2.2. Streams and Hyporheic Zones
2.3. Lakes and Karst Mountain Ponds
2.4. AQUALIFE Software
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bunn, S.E. Grand Challenge for the Future of Freshwater Ecosystems. Front. Environ. Sci. 2016, 4, 257. [Google Scholar] [CrossRef] [Green Version]
- Bassem, S.M. Water pollution and aquatic biodiversity. Biodivers. Int. J. 2020, 4, 10–16. [Google Scholar]
- Erasmus, J.; Malherbe, W.; Zimmermann, S.; Lorenz, A.; Nachev, M.; Wepener, V.; Sures, B.; Smit, N.J. Metal accumulation in riverine macroinvertebrates from a platinum mining region. Sci. Total. Environ. 2020, 703, 134738. [Google Scholar] [CrossRef]
- Pal, A.; Gin, K.Y.-H.; Lin, A.Y.-C.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total. Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef] [PubMed]
- Boy-Roura, M.; Nolan, B.T.; Menció, A.; Mas-Pla, J. Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J. Hydrol. 2013, 505, 150–162. [Google Scholar] [CrossRef]
- Lewis, K.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Pahl-Wostl, C.; Bunn, S.E.; Lawford, R. Global water, the anthropocene and the transformation of a science. Curr. Opin. Environ. Sustain. 2013, 5, 539–550. [Google Scholar] [CrossRef]
- UN-United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. In Proceedings of the 47th Session of the United Nations Statistical Commission, New York, NY, USA, 8–11 March 2016. [Google Scholar]
- MEA-Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Balian, E.V.; Segers, H.; Martens, K.; Leveque, C. The Freshwater Animal Diversity Assessment: An overview of the results. Freshw. Anim. Diversity Assess. 2008, 198, 627–637. [Google Scholar] [CrossRef]
- Guzik, M.T.; Austin, A.D.; Cooper, S.J.; Harvey, M.S.; Humphreys, W.F.; Bradford, T.; Tomlinson, M. Is the Australian subterranean fauna uniquely diverse? Invertebr. Syst. 2010, 24, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Por, F.D.; Botosaneanu, L. Stygofauna Mundi, a Faunistic, Distributional, and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial). J. Crustac. Boil. 1987, 7, 203. [Google Scholar] [CrossRef]
- Melita, M.; Amalfitano, S.; Preziosi, E.; Ghergo, S.; Frollini, E.; Parrone, D.; Zoppini, A. Physiological Profiling and Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area. Water 2019, 11, 2624. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, T.; Fiasca, B.; Tabilio, A.D.C.; Murolo, A.; Di Cicco, M.; Galassi, D.M.P. The weighted Groundwater Health Index (wGHI) by Korbel and Hose (2017) in European groundwater bodies in nitrate vulnerable zones. Ecol. Indic. 2020, 116, 106525. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Murolo, A.; Fiasca, B.; Di Camillo, A.T.; Di Cicco, M.; Lombardo, P. Potential of A Trait-Based Approach in the Characterization of An N-Contaminated Alluvial Aquifer. Water 2019, 11, 2553. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, T.; Di Marzio, W.D.; Fiasca, B.; Galassi, D.M.P.; Korbel, K.; Iepure, S.; Pereira, J.L.; Reboleira, A.S.P.; Schmidt, S.; Hose, G.C. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total. Environ. 2019, 681, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Sánchez, A.; Hose, G.C.; Reboleira, A.S.P. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. Chemosphere 2020, 244, 125422. [Google Scholar] [CrossRef] [PubMed]
- Hose, G.C.; Symington, K.; Lategan, M.J.; Siegele, R. The Toxicity and Uptake of As, Cr and Zn in a Stygobitic Syncarid (Syncarida: Bathynellidae). Water 2019, 11, 2508. [Google Scholar] [CrossRef] [Green Version]
- Piccini, L.; Di Lorenzo, T.; Costagliola, P.; Lombardo, P. Marble Slurry’s Impact on Groundwater: The Case Study of the Apuan Alps Karst Aquifers. Water 2019, 11, 2462. [Google Scholar] [CrossRef] [Green Version]
- Korbel, K.L.; Stephenson, S.; Hose, G.C. Sediment size influences habitat selection and use by groundwater macrofauna and meiofauna. Aquat. Sci. 2019, 81, 39. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Hyne, R.V. Detection and analysis of neonicotinoids in river waters–Development of a passive sampler for three commonly used insecticides. Chemosphere 2014, 99, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hunn, J.; Macaulay, S.; Matthaei, C.D. Food Shortage Amplifies Negative Sublethal Impacts of Low-Level Exposure to the Neonicotinoid Insecticide Imidacloprid on Stream Mayfly Nymphs. Water 2019, 11, 2142. [Google Scholar] [CrossRef] [Green Version]
- Peralta-Maraver, I.; Posselt, M.; Perkins, D.; Robertson, A. Mapping Micro-Pollutants and Their Impacts on the Size Structure of Streambed Communities. Water 2019, 11, 2610. [Google Scholar] [CrossRef] [Green Version]
- Labuschagne, M.; Wepener, V.; Nachev, M.; Zimmermann, S.; Sures, B.; Smit, N.J. The Application of Artificial Mussels in Conjunction with Transplanted Bivalves to Assess Elemental Exposure in a Platinum Mining Area. Water 2019, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Deliberalli, W.; Cansian, R.L.; Pereira, A.A.M.; Loureiro, R.C.; Hepp, L.U.; Restello, R.M. The effects of heavy metals on the incidence of morphological deformities in Chironomidae (Diptera). Zoologia 2018, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Goretti, E.; Pallottini, M.; Pagliarini, S.; Catasti, M.; La Porta, G.; Selvaggi, R.; Gaino, E.; Di Giulio, A.M.; Ali, A. Use of Larval Morphological Deformities in Chironomus plumosus (Chironomidae: Diptera) as an Indicator of Freshwater Environmental Contamination (Lake Trasimeno, Italy). Water 2019, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Iannella, M.; Console, G.; D’Alessandro, P.; Cerasoli, F.; Mantoni, C.; Ruggieri, F.; Di Donato, F.; Biondi, M. Preliminary Analysis of the Diet of Triturus carnifex and Pollution in Mountain Karst Ponds in Central Apennines. Water 2019, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Strona, G.; Fattorini, S.; Fiasca, B.; Di Lorenzo, T.; Di Cicco, M.; Lorenzetti, W.; Boccacci, F.; Lombardo, P. AQUALIFE Software: A New Tool for a Standardized Ecological Assessment of Groundwater Dependent Ecosystems. Water 2019, 11, 2574. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, T.; Hose, G.C.; Galassi, D.M.P. Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. Water 2020, 12, 1810. https://doi.org/10.3390/w12061810
Di Lorenzo T, Hose GC, Galassi DMP. Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. Water. 2020; 12(6):1810. https://doi.org/10.3390/w12061810
Chicago/Turabian StyleDi Lorenzo, Tiziana, Grant C. Hose, and Diana M.P. Galassi. 2020. "Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact" Water 12, no. 6: 1810. https://doi.org/10.3390/w12061810
APA StyleDi Lorenzo, T., Hose, G. C., & Galassi, D. M. P. (2020). Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. Water, 12(6), 1810. https://doi.org/10.3390/w12061810