Measurement of Total Nitrogen Concentration in Surface Water Using Hyperspectral Band Observation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measured Spectral Data and Preprocessing
2.3. Spectral Transformation
2.4. Spectral Index Construction
2.5. PSO-SVM Model
2.6. Evaluation Indices
3. Results and Analysis
3.1. Selection of Sensitive Bands Based on Spectral Transformation
3.2. Selection of the Sensitive Band Based on the Spectral Index
3.3. Estimation of the Total Nitrogen Concentration in Surface Water
3.3.1. Estimation of the Total Nitrogen Concentration in Surface Water Based on Spectral Transformation and the Spectral Index
3.3.2. Estimation of the Total Nitrogen Concentration in Surface Water Based on Spectral Transformation and Spectral Index Coupling
4. Discussion
4.1. Theoretical Basis
4.2. Selection of Sensitive Bands
4.3. Advantage of Coupling Model
4.4. Deficiencies and Prospects
5. Conclusions
- (1)
- After determination, the nitrogen concentration of all samples was quite variable, the coefficient of variation was 83.12%, and the concentration in the lower reaches was roughly higher than that in the upper reaches.
- (2)
- Through correlation analysis of the hyperspectral reflectance value and the measured nitrogen concentration under spectral transformation, the spectral index and their coupling forms, it was found that the bands near 680, 850, and 940 nm can be used as the sensitive bands for the inversion of the total nitrogen concentration in surface water in arid areas.
- (3)
- After optimization, in the estimation model based on the sensitive bands, the model based on the coupling form of (R1/2)′-SRI had the highest accuracy, followed by the accuracy of the model based on (R1/2)′ spectral transformation and that of the model based on the SDI spectral index.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Y.Z.; Wu, Y.Y.; Gu, B.J. Urban rivers as hotspots of regional nitrogen pollution. Environ. Pollut. 2015, 205, 139–144. [Google Scholar]
- Bricker, S.B.; Rice, K.C.; Bricker, O.P. From Headwaters to Coast: Influence of Human Activities on Water Quality of the Potomac River Estuary. Aquat. Geochem. 2014, 20, 291–323. [Google Scholar] [CrossRef]
- Räike, A.; Pietiläinen, O.; Rekolainen, S.; Kauppila, P.; Pitkanen, H.; Niemi, J.; Raateland, A.; Vuorenmaa, J. Trends of phosphorus, nitrogen and chlorophyll a concentrations in Finnish rivers and lakes in 1975–2000. Sci. Total Environ. 2003, 310, 47–59. [Google Scholar] [CrossRef]
- Biello, D. Fertilizer Runoff Overwhelms Streams and Rivers--Creating Vast “Dead Zones”. Sci. Am. 14 March 2008. Available online: https://www.scientificamerican.com/article/fertilizer-runoff-overwhelms-streams/ (accessed on 20 June 2020).
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Sun, X. Yangtze and Pearl River Estuaries Now ‘Dead Zones’. China Daily. Available online: http://www.chinadaily.com.cn/china/2006-10/20/content_712573.htm (accessed on 7 April 2020).
- Hilborn, E.D.; Roberts, V.A.; Backer, L.; Deconno, E.; Egan, J.S.; Hyde, J.B.; Nicholas, D.; Wiegert, E.; Billing, L.; Diorio, M.; et al. Algal bloom-associated disease outbreaks among users of freshwater lakes--United States, 2009–2010. MMWR-Morb. Mortal. Wkly. Rep. 2014, 63, 11–15. [Google Scholar] [PubMed]
- Wang, X.; Zhang, F.; Kung, H.T.; Ghulam, A.; Trumbo, A.L.; Yuan, J. Evaluation and estimation of surface water quality in an arid region based on EEM-PARAFAC and 3D fluorescence spectral index: A case study of the Ebinur Lake Watershed, China. Catena 2017, 155, 62–74. [Google Scholar] [CrossRef]
- Mohammad, H.G.; Assefa, M.M.; Lakshmi, R. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar]
- Tasistro, A.S.; Shaaban, S.; Kissel, D.E.; Vendrell, P.F. Near-Infrared Reflectance Spectroscopy for the Analysis of Water and Total Nitrogen Concentrations in Poultry Litter. Commun. Soil Sci. Plant Anal. 2003, 34, 1367–1379. [Google Scholar] [CrossRef]
- Liu, J.M.; Zhang, Y.J.; Yuan, D.; Song, X.Y. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery. Water 2015, 7, 6551–6573. [Google Scholar] [CrossRef] [Green Version]
- Amiri, B.J.; Nakane, K. Comparative Prediction of Stream Water Total Nitrogen from Land Cover Using Artificial Neural Network and Multiple Linear Regression Approaches. Pol. J. Environ. Stud. 2009, 18, 151–160. [Google Scholar]
- Liu, H.; Gong, Z.N.; Zhao, W.J. Estimating total nitrogen concentration in reclaimed water based on hyperspectral reflectance information from emergent plants: A case study of Mencheng Lake Wetland Park in Beijing. Chin. J. Appl. Ecol. 2014, 25, 3609–3618. (In Chinese) [Google Scholar]
- Pan, B.L.; Yi, W.N.; Wang, X.H.; Qin, H.P.; Wang, J.C.; Qiao, Y.L. Inversion of the Lake Total Nitrogen Concentration by Multiple Regression Kriging Model Based on Hyperspectral Data of HJ-1A. Spectrosc. Spectr. Anal. 2011, 31, 1884–1888. (In Chinese) [Google Scholar]
- Pan, B.Z.; Wang, H.J.; Liang, X.M.; Wang, H.Z. Factors influencing chlorophyll a concentration in the yangtze-connected lakes. FRESENIUS Environ. Bull. 2009, 18, 1894–1900. [Google Scholar]
- Jia, F. The feasibility research for detecting the nitrogen concentration in sewage quickly and continuously with NIPGA. J. Northeast Norm. Univ. 2013, 45, 88–90. (In Chinese) [Google Scholar]
- Hook, A.M.; Yeakley, J.A. Stormflow Dynamics of Dissolved Organic Carbon and Total Dissolved Nitrogen in a Small Urban Watershed. Biogeochemistry 2005, 75, 409–431. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Muneoka, T.; Wakou, S.; Kimura, M.; Tsuji, O. Evaluation of the Ion Components for the Estimation of Total Nitrogen Concentration in River Water based on Electrical Conductivity. J. Drugs Dermatol. JDD 2014, 13, 1491–1493. [Google Scholar]
- Chang, N.B.; Imen, S.; Vannah, B. Remote Sensing for Monitoring Surface Water Quality Status and Ecosystem State in Relation to the Nutrient Cycle: A 40-Year Perspective. Crit. Rev. Environ. Sci. Technol. 2015, 45, 101–166. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, S.; Kimirei, I.A.; Zhang, L.; Mgana, H.; Mziray, P.; Wang, Z.; Yu, C.; Shen, Q.S. Wet deposition of atmospheric nitrogen contributes to nitrogen loading in the surface waters of Lake Tanganyika, East Africa: A case study of the Kigoma region. Environ. Sci. Pollut. Res. 2018, 25, 1–15. [Google Scholar] [CrossRef]
- Song, G.Q.; Yin, M.; Zhang, W.D.; Jiang, B. Determination of concentration and fluxes of total nitrogen in river entries of Danjiangkou Reservoir. Environ. Sci. Technol. 2009, 32, 135–137. [Google Scholar]
- Medjahed, S.A.; Ouali, M. Band selection based on optimization approach for hyperspectral image classification. Egypt. J. Remote Sens. Space Sci. 2018, 21, 413–418. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Hyperspectral Band Selection: A Review. IEEE Geosci. Remote. Sens. Mag. 2020, 2, 118–139. [Google Scholar] [CrossRef]
- Lorenzo, P.R.; Tulczyjew, L.; Marcinkiewicz, M.; Nalepa, J. Hyperspectral Band Selection Using Attention-Based Convolutional Neural Networks. IEEE Access 2020, 8, 42384–42403. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Hsiang-te, K.; Verner, C.J. New methods for improving the remote sensing estimation of soil organic matter concentration (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote Sens. Environ. 2018, 218, 104–118. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, F.; Zhang, Z.; Kung, H.; Yushanjiang, A. Hydrogen and Oxygen Isotope Composition and Water Quality Evaluation for Different Water Bodies in the Ebinur Lake Watershed, Northwestern China. Water 2019, 11, 2067. [Google Scholar] [CrossRef] [Green Version]
- Gentle, B.S.; Ellis, P.S.; Grace, M.R.; Mckelvie, I.D. Flow analysis methods for the direct ultra-violet spectrophotometric measurement of nitrate and total nitrogen in freshwaters. Anal. Chim. Acta 2011, 704, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Curcio, D.; Ciraolo, G.; D’Asaro, F.; Minacapilli, M. Prediction of Soil Texture Distributions Using VNIR-SWIR Reflectance Spectroscopy. Procedia Environ. Sci. 2013, 19, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Rakshit, S.; Ghosh, A.; Shankar, B.U. Fast mean filtering technique (FMFT). Pattern Recognit. 2007, 40, 890–897. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kondratyev, K.Y. Optical models of mesotrophic and eutrophic water bodies. Int. J. Remote Sens. 1991, 12, 373–385. [Google Scholar] [CrossRef]
- Gons, H.J.; Auer, M.T.; Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens. Environ. 2008, 112, 098–4106. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Zhang, Y.; Chen, Y.Y.; Yu, L.; Liu, Y.F.; Liu, Y.L.; Cheng, H.; Liu, Y. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning machine. Sci. Total Environ. 2018, 644, 1232–1243. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J. Estimation of soil salinity using three quantitative methods based on visible and near-infrared reflectance spectroscopy: A case study from Egypt. Arab. J. Geosci. 2015, 8, 5127–5140. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, S.; Zhang, H.; Bi, X.L. Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ Data. J. Coast. Conserv. 2016, 20, 271–279. [Google Scholar] [CrossRef]
- Huang, C.L.; Dun, J.F. A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 2008, 8, 1381–1391. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Qi, H.; Paz-Kagan, T.; Karnieli, A.; Jin, X.; Li, S. Evaluating calibration methods for predicting soil available nutrients using hyperspectral VNIR data. Soil Tillage Res. 2018, 175, 267–275. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F. Effects of land use/cover on surface water pollution based on remote sensing and 3D-EEM fluorescence data in the Jinghe Oasis. Sci. Rep. 2018, 8, 13099. [Google Scholar] [CrossRef]
- Ma, R.; Tang, J.; Dai, J.; Zhang, Y.L.; Song, Q. Absorption and scattering properties of water body in Taihu Lake, China: Absorption. Int. J. Remote Sens. 2006, 27, 4277–4304. [Google Scholar] [CrossRef]
- Nakariyakul, S. Fast spatial averaging: An efficient algorithm for 2D mean filtering. J. Supercomput. 2013, 65, 262–273. [Google Scholar] [CrossRef]
- Fan, C. Spectral Analysis of Water Reflectance for Hyperspectral Remote Sensing of Water Quailty in Estuarine Water. J. Geosci. Environ. Prot. 2014, 2, 19–27. [Google Scholar] [CrossRef]
- Tan, J.; Cherkauer, K.A.; Chaubey, I. Using hyperspectral data to quantify water-quality parameters in the Wabash River and its tributaries, Indiana. Int. J. Remote Sens. 2015, 36, 5466–5484. [Google Scholar] [CrossRef]
- Nagra, A.A.; Han, F.; Ling, Q.H.; Mehta, S. An Improved Hybrid Method Combining Gravitational Search Algorithm with Dynamic Multi Swarm Particle Swarm Optimization. IEEE Access 2019, 7, 50388–50399. [Google Scholar] [CrossRef]
- García Nieto, P.J.; García-Gonzalo, E.; Alonso Fernández, J.R.; Muñizb, C.D. Hybrid PSO–SVM-based method for long-term forecasting of turbidity in the Nalón river basin: A case study in Northern Spain. Ecol. Eng. 2014, 73, 192–200. [Google Scholar] [CrossRef]
- Hasanlou, M.; Samadzadegan, F. Comparative Study of Intrinsic Dimensionality Estimation and Dimension Reduction Techniques on Hyperspectral Images Using K-NN Classifier. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1046–1050. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Schalles, J.F.; Gitelson, A.A.; Yacobi, Y.Z.; Kroenke, A.E. Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake. J. Phycol. 2002, 34, 383–390. [Google Scholar] [CrossRef]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.B.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Chen, S.; Han, L.; Chen, X.; Li, D.; Sun, L.; Li, Y. Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method. ISPRS J. Photogramm. Remote Sens. 2015, 99, 58–69. [Google Scholar] [CrossRef]
- Li, K.; Xiao, P. Temporal and Spatial Distribution of Chlorophyll-A Concentration and Its Relationships with TN, TP Concentrations in Lake Chaohu. J. Biol. 2011, 28, 53–56. (In Chinese) [Google Scholar]
- Zhao, K.; Valle, D.; Popescu, S.; Zhang, X.S.; Mallick, B.K. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens. Environ. 2013, 132, 102–119. [Google Scholar] [CrossRef]
- Liang, Y.; Joachim, R.; Van, B.B.M.; Ouboter, M.; Vlugt, C.V.D.; Broers, H.P. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: Monitoring the greater Amsterdam area. Hydrol. Earth Syst. Sci. 2018, 22, 487–508. [Google Scholar]
- Hao, Z.; Gao, Y.; Yang, T.; Tian, J. Atmospheric wet deposition of nitrogen in a subtropical watershed in China: Characteristics of and impacts on surface water quality. Environ. Sci. Pollut. Res. 2017, 24, 8489–8503. [Google Scholar] [CrossRef] [PubMed]
Number | Spectral Transformation Method | Abbreviation |
---|---|---|
1 | First derivative | R′ |
2 | Second derivative | R′′ |
3 | Square root of R | R1/2 |
4 | First derivative of R square root | (R1/2)′ |
5 | Second derivative of R square root | (R1/2)′′ |
6 | Inverse of R | 1/R |
7 | First derivative of inverse | (1/R)′ |
8 | Second derivative of inverse | (1/R)” |
9 | Logarithm of R | lgR |
10 | First derivative of logarithm | (lgR)′ |
11 | Second derivative of logarithm | (lgR)′′ |
12 | Logarithm of 1/R | lg(1/R) |
13 | First derivative of 1/R logarithm | (lg(1/R))′ |
14 | Second derivative of 1/R logarithm | (lg(1/R))′′ |
Spectral Index | Calculation Formula | Reference |
---|---|---|
SDI | Rj − Ri | [33] |
SRI | Rj /Ri | |
SNDI | Rj − Ri /Rj + Ri | [34] |
Spectral Transformation | Sensitive Bands (nm) | Correlation Coefficient |
---|---|---|
(R1/2)′ | 665, 688 | −0.72, 0.80 |
(R1/2)′′ | 659, 723 | −0.61, −0.59 |
(1/R)′ | 660, 762 | 0.68, −0.67 |
(1/R)′′ | 761, 766 | −0.55, 0.57 |
(lgR)′ | 657, 691 | −0.70, 0.78 |
(lgR)′′ | 659, 767 | −0.57, −0.60 |
(lg(1/R))′ | 662, 689 | 0.71, −0.79 |
(lg(1/R))′′ | 658, 766 | 0.54, 0.59 |
Spectral Indices | Sensitive Bands Combination (nm) | Correlation Coefficient |
---|---|---|
SDI | (693, 683) | 0.71 |
SNDI | (693, 687) | 0.69 |
SRI | (693, 687) | 0.69 |
Sensitive Band Optimization Method | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE (mg/L) | RPD | R2 | RMSE (mg/L) | RPD | |
(R1/2)′ | 0.814 | 0.899 | 3.260 | 0.562 | 1.516 | 2.126 |
(lg(1/R))′ | 0.820 | 0.622 | 4.710 | 0.576 | 1.624 | 1.985 |
SDI | 0.682 | 0.930 | 3.150 | 0.721 | 4.511 | 0.715 |
Coupling Forms | Sensitive Bands Combination (nm) | Correlation Coefficient |
---|---|---|
(R1/2)′-SDI | (691, 661) | 0.76 |
(R1/2)′-SNDI | (690, 388) | 0.65 |
(R1/2)′-SRI | (848, 687) | 0.62 |
(lg(1/R))′-SDI | (690, 661) | 0.73 |
(lg(1/R))′-SNDI | (687, 383) | 0.65 |
(lg(1/R))′-SRI | (939, 840) | 0.72 |
(lgR)′-SDI | (691, 661) | 0.71 |
(lgR)′-SNDI | (690, 388) | 0.69 |
(lgR)′-SRI | (848, 688) | 0.69 |
Coupling Forms | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE (mg/L) | RPD | R2 | RMSE (mg/L) | RPD | |
(R1/2)′-SRI | 0.653 | 0.97 | 3.022 | 0.604 | 1.611 | 2.002 |
(lg(1/R))′-SRI | 0.751 | 0.948 | 3.094 | 0.613 | 1.798 | 1.793 |
Evaluation Indices | Coupling Form | Spectral Transformation | Spectral Index | ||
---|---|---|---|---|---|
(R1/2)′-SRI | (lg(1/R))′ | Difference | SDI | Difference | |
R2 | 0.604 | 0.576 | −0.028 ↓ | 0.721 | 0.117 ↑ |
RMSE | 1.611 | 1.624 | 0.013 ↓ | 4.511 | 2.9 ↓ |
RPD | 2.002 | 1.985 | −0.017 ↓ | 0.715 | −1.287 ↓ |
Evaluation Indices | Testing Method | Significance | Result | Average Value (First Group) | Average Value (Second Group) |
---|---|---|---|---|---|
R2 | t-test | 0.542 | No significant difference | 0.357 | 0.414 |
RPD | 0.023 | Significant difference | 1.253 | 1.777 | |
RMSE | Nonparametric statistical test (Mann–Whitney) | 0.030 | Significant difference | 2.949 | 1.985 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, F.; Ge, X.; Zhang, X.; Chan, N.w.; Qi, Y. Measurement of Total Nitrogen Concentration in Surface Water Using Hyperspectral Band Observation Method. Water 2020, 12, 1842. https://doi.org/10.3390/w12071842
Liu C, Zhang F, Ge X, Zhang X, Chan Nw, Qi Y. Measurement of Total Nitrogen Concentration in Surface Water Using Hyperspectral Band Observation Method. Water. 2020; 12(7):1842. https://doi.org/10.3390/w12071842
Chicago/Turabian StyleLiu, Changjiang, Fei Zhang, Xiangyu Ge, Xianlong Zhang, Ngai weng Chan, and Yaxiao Qi. 2020. "Measurement of Total Nitrogen Concentration in Surface Water Using Hyperspectral Band Observation Method" Water 12, no. 7: 1842. https://doi.org/10.3390/w12071842
APA StyleLiu, C., Zhang, F., Ge, X., Zhang, X., Chan, N. w., & Qi, Y. (2020). Measurement of Total Nitrogen Concentration in Surface Water Using Hyperspectral Band Observation Method. Water, 12(7), 1842. https://doi.org/10.3390/w12071842