Does Future Climate Bring Greater Streamflow Simulated by the HSPF Model to South Korea?
Abstract
:1. Introduction
2. Materials and Methods
2.1. HSPF Model
2.2. HSPF Model Setup
2.2.1. Hydrological Climate Data Construction
2.2.2. Topographical Data Construction
2.3. HSPF Model Calibration and Validation
2.4. HSPF Model Evaluation
3. Results and Discussion
3.1. HSPF Model Calibration and Validation Result
3.2. Future Climate and Long-term Flow Projection and Relative Change Analysis Over South Korea
3.2.1. Future Climate and Long-Term Flow Projection over South Korea
3.2.2. Relative Change Analysis of Future Climate and Long-Term Flow over South Korea
3.2.3. Relative Change Analysis of Future Seasonal and Monthly Flow over South Korea
3.2.4. Relative Change Analysis of Future Flow for 109 Mid-Size Watersheds over South Korea
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olsson, J.; Arheimer, B.; Borris, M.; Donnelly, C.; Foster, K.; Nikulin, G.; Persson, M.; Perttu, A.M.; Uvo, C.B.; Viklander, M.; et al. Hydrological climate change impact assessment at small and large scales: Key messages from recent progress in Sweden. Climate 2016, 4, 39. [Google Scholar] [CrossRef]
- Masood, M.; Takeuchi, K. Climate change impacts and its implications on future water resource management in the Meghna Basin. Futures 2016, 78–79, 1–18. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Feng, P.; Cheng, L.; Yu, Q.; Eamus, D. Impacts of future climate change on water resource availability of eastern Australia: A case study of the Manning River basin. J. Hydrol. 2019, 573, 49–59. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Leng, G.; Xie, H.; Hou, X.; Wei, G. Impacts of climate change on watershed systems and potential adaptation through BMPs in a drinking water source area. J. Hydrol. 2019, 573, 123–135. [Google Scholar] [CrossRef]
- Bae, D.H.; Jung, I.W.; Lettenmaier, D.P. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju basin, Korea. J. Hydrol. 2011, 401, 90–105. [Google Scholar] [CrossRef]
- Shin, M.J.; Eum, H.I.; Kim, C.S.; Jung, I.W. Alteration of hydrologic indicators for Korean catchments under CMIP5 climate projections. Hydrol. Process. 2016, 30, 4517–4542. [Google Scholar] [CrossRef]
- Zhou, Z.; Ouyang, Y.; Li, Y.; Qiu, Z.; Moran, M. Estimating impact of rainfall change on hydrological processes in Jianfengling rainforest watershed, China using BASINS-HSPF-CAT modeling system. Ecol. Eng. 2017, 105, 87–94. [Google Scholar] [CrossRef]
- Göncü, S.; Albek, E. Modeling climate change effects on streams and reservoirs with HSPF. Water Resour. Manag. 2010, 24, 707–726. [Google Scholar] [CrossRef]
- Albek, M.; Bakır Öğütveren, Ü.B.; Albek, E. Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF. J. Hydrol. 2004, 285, 260–271. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Saleh, A.; Du, B. Evaluation of SWAT and HSPF within BASINS program for the upper North Bosque River watershed in central Texas. Trans. ASAE 2004, 47, 1039–1049. [Google Scholar]
- Ackerman, D.; Schiff, K.C.; Weisberg, S.B. Evaluating HSPF in an arid, urbanized watershed. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 477–486. [Google Scholar] [CrossRef]
- Amirhossien, F.; Alireza, F.; Kazem, J.; Mohammadbagher, S. A comparison of ANN and HSPF models for runoff simulation in Balkhichai River Watershed, Iran. Am. J. Clim. Chang. 2015, 04, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.R.; Kim, S.M. Evaluation of HSPF model applicability for runoff estimation of 3 sub-watershed in Namgang dam watershed. J. Korean Soc. Water Environ. 2018, 34, 328–338. [Google Scholar]
- Hwang, B.H. An Applicability Estimation of the HSPF Model Considering Watershed Scale. Master’s Thesis, Kyungpook National University, Daegu, Korea, 2010. [Google Scholar]
- Kim, N.W.; Shin, A.H.; Kim, C.G. Comparison of SWAT-K and HSPF for hydrological components Modeling in the Chungju dam watershed. J. Environ. Sci. 2009, 18, 609–619. [Google Scholar]
- Kim, S.M.; Park, S.W. Calibration and validation of HSPF model to estimate the pollutant loads from rural small watershed. J. Korea Water Resour. Assoc. 2004, 37, 643–651. [Google Scholar] [CrossRef]
- Zarriello, P.J.; Parker, G.W.; Armstrong, D.S.; Carlson, C.S. Effects of Water Use and Land Use on Streamflow and Aquatic Habitat in the Sudbury and Assabet River Basins; MA Report 2010–5042; U.S. Geological Survey Scientific Investigations: Reston, VA, USA, 2010; pp. 17–32.
- USEPA. A Tool for Managing Watershed Modeling Time-Series Data (WDMUtil); Version 2.0; User’s Manual, Contract No. 68-C-98-010 Work Assignment No; Office of Water, U.S. EPA: Washington, DC, USA, 2001; pp. 1–41.
- U.S. Geological Survey (USGS). User’s Manual for an Expert System (HSPEXP) for Calibration of the Hydrological Simulation Program-Fortran, Water-Resources Investigations Report 94-4168; Hydrologic Analysis Support Section, United States Geological Survey: Reston, VA, USA, 1994; pp. 1–6.
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Eum, H.-I.; Cannon, A.J. Intercomparison of projected changes in climate extremes for South Korea: Application of trend preserving statistical downscaling methods to the CMIP5 ensemble. Int. J. Climatol. 2017, 37, 3381–3397. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 97, pp. 41–55. [Google Scholar]
- USEPA. Estimating Hydrology and Hydraulic Parameters for HSPF; Technical Note 6, EPA-823-R00-012; Office of Water, U.S. EPA: Washington, DC, USA, 2000; pp. 8–30.
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Lee, B.-J.; Jung, I.W.; Bae, D.-H. Parameter regionalization of semi-distributed runoff model using multivariate statistical analysis. J. Korea Water Resour. Assoc. 2009, 42, 149–160. [Google Scholar] [CrossRef]
No. | GCM Name | Resolution (Degree) | Institution | Available Variable a | |
---|---|---|---|---|---|
PRCP (mm) | WSPD (m/s) | ||||
TMAX (°C) | RHUM (%) | ||||
TMIN (°C) | RSDS (MJ/m2) | ||||
1 | INM-CM4 | 2.000 × 1.500 | Institute for Numerical Mathematics | ○ | ○ |
2 | HadGEM2-ES | 1.875 × 1.250 | Met Office Hadley Centre | ○ | ○ |
3 | NorESM1-M | 2.500 × 1.895 | Norwegian Climate Centre | ○ | |
4 | MRI-CGCM3 | 1.125 × 1.122 | Meteorological Research Institute | ○ | ○ |
5 | GFDL-ESM2G | 2.500 × 2.023 | Geophysical Fluid Dynamics Laboratory | ○ | ○ |
6 | CNRM-CM5 | 1.406 × 1.401 | Centre National de Recherches Meteorologiques | ○ | ○ |
7 | CESM1-BGC | 1.250 × 0.942 | National Center for Atmospheric Research | ○ | |
8 | IPSL-CM5A-MR | 2.500 × 1.268 | Institut Pierre-Simon Laplace | ○ | ○ |
9 | CMCC-CMS | 1.875 × 1.865 | Centro Euro-Mediterraneo per I Cambiamenti Climatici | ○ | |
10 | CMCC-CM | 0.750 × 0.748 | Centro Euro-Mediterraneo per I Cambiamenti Climatici | ○ | |
11 | IPSL-CM5A-LR | 3.750 × 1.895 | Institut Pierre-Simon Laplace | ○ | ○ |
12 | CanESM2 | 2.813 × 2.791 | Canadian Centre for Climate Modelling and Analysis | ○ | ○ |
13 | HadGEM2-AO | 1.875 × 1.250 | Met Office Hadley Centre | ○ |
ID | Mid-Size Watershed Code | Mid-Size Watershed Name | Calibration Period | Validation Period |
---|---|---|---|---|
1 | 1204 | Goesan Dam | 1996–2005 | 2006–2016 |
2 | 2001 | Andong Dam | 1996–2005 | 2006–2016 |
3 | 2202 | Imha Dam | 1999–2005 | 2006–2016 |
4 | 2015 | Hapcheon Dam | 1999–2005 | 2006–2016 |
5 | 3001 | Yongdam Dam | 2003–2005 | 2006–2016 |
6 | 4001 | Seomjin river Dam | 1996–2005 | 2006–2016 |
Parameter | Description | Units | Ranges of Values | |||
---|---|---|---|---|---|---|
Typical | Possible | |||||
Min | Max | Min | Max | |||
LZSN | Lower zone nominal storage | inches | 3.0 | 8.0 | 2.0 | 15.0 |
INFILT | Soil infiltration capacity index | inches/h | 0.01 | 0.25 | 0.001 | 0.50 |
AGWRC | Ground water recession coefficient | none | 0.92 | 0.99 | 0.85 | 0.999 |
UZSN | Upper zone nominal storage | inches | 0.1 | 1.0 | 0.05 | 2.0 |
INTFW | Interflow inflow parameter | none | 1.0 | 3.0 | 1.0 | 10.0 |
LZETP | Lower zone ET parameter | none | 0.2 | 0.7 | 0.1 | 0.9 |
DEEPFR | Fraction of groundwater inflow to deep recharge | none | 0.0 | 0.20 | 0.0 | 0.50 |
IRC | Interflow recession parameter | none | 0.5 | 0.7 | 0.3 | 0.85 |
Scale | Measure | Output Response | Temporal Scale a | Performance Evaluation Criteria | |||
---|---|---|---|---|---|---|---|
Very Good | Good | Satisfactory | Not Satisfactory | ||||
Watershed scale | R2 | Flow b | D-M-A | 0.85 < R2 ≤ 1 | 0.75 < R2 ≤ 0.85 | 0.60 < R2 ≤ 0.75 | R2 ≤ 0.60 |
NSE | Flow | D-M-A | 0.80 < NSE ≤ 1 | 0.70 < NSE ≤ 0.80 | 0.50 < NSE ≤ 0.70 | NSE ≤ 0.50 | |
PBIAS (%) | Flow | D-M-A | PBIAS < ±5 | ±5 ≤ PBIAS ≤ ±10 | ±10 ≤ PBIAS ≤ ±15 | PBIAS ≥ ±15 |
Period | Statistics | Dam | |||||
---|---|---|---|---|---|---|---|
Goesan Dam | Andong Dam | Imha Dam | Hapcheon Dam | Yongdam Dam | Seomjin River Dam | ||
Calibration | PBIAS (%) | −10.3914 | −8.7788 | −10.1586 | −8.3744 | −16.0404 | −4.7378 |
R2 | 0.7405 | 0.7479 | 0.7195 | 0.7361 | 0.7634 | 0.6963 | |
NSE | 0.7292 | 0.7201 | 0.7187 | 0.7165 | 0.6679 | 0.6937 | |
Validation | PBIAS (%) | 2.2801 | 7.4059 | 6.2297 | 5.1429 | 14.2007 | −13.6201 |
R2 | 0.7941 | 0.8232 | 0.7260 | 0.6670 | 0.8234 | 0.7882 | |
NSE | 0.7083 | 0.8181 | 0.6761 | 0.6656 | 0.8201 | 0.7823 |
Parameter | Description | Units | Goesan Dam | Andong Dam | Imha Dam | Hapcheon Dam | Yongdam Dam | Seomjin River Dam |
---|---|---|---|---|---|---|---|---|
LZSN(Urban) | Lower zone nominal storage | inches | 4.154 | 4.135 | 4.045 | 4.135 | 4.135 | 4.135 |
LZSN(Forest) | ||||||||
4.654 | 4.635 | 4.545 | 4.635 | 4.635 | 4.635 | |||
LZSN (Wetland) | ||||||||
4.154 | 4.135 | 4.045 | 4.135 | 4.135 | 4.135 | |||
LZSN (Agricultural) | ||||||||
4.654 | 4.635 | 4.545 | 4.635 | 4.635 | 4.635 | |||
2.154 | 2.135 | 2.045 | 2.135 | 2.135 | 2.135 | |||
LZSN (Water) | ||||||||
INFILT | Soil infiltration capacity index | inches/hour | 0.003 | 0.003 | 0.002 | 0.031 | 0.003 | 0.210 |
AGWRC | Ground water recession coefficient | none | 0.858 | 0.855 | 0.989 | 0.855 | 0.855 | 0.926 |
UZSN | Upper zone nominal storage | inches | 0.054 | 0.055 | 0.059 | 0.055 | 0.055 | 0.051 |
INTFW | Interflow inflow parameter | none | 9.560 | 9.914 | 9.900 | 9.914 | 9.914 | 9.940 |
LZETP | Lower zone ET parameter | none | 0.379 | 0.152 | 0.740 | 0.152 | 0.152 | 0.175 |
DEEPFR | Fraction of groundwater inflow to deep recharge | none | 0.002 | 0.000 | 0.006 | 0.000 | 0.000 | 0.004 |
IRC | Interflow recession parameter | none | 0.326 | 0.848 | 0.304 | 0.848 | 0.848 | 0.301 |
Variables | Scenario | S0 (1976–2005) | S1 (2011–2040) | S2 (2041–2070) | S3 (2071–2099) |
---|---|---|---|---|---|
Precipitation (mm) | RCP 4.5 | 1306.8 | 1357.3 | 1405.1 | 1455.0 |
RCP 8.5 | 1355.0 | 1427.9 | 1540.1 | ||
Temperature (℃) | RCP 4.5 | 12.4 | 13.3 | 14.2 | 14.7 |
RCP 8.5 | 13.4 | 14.8 | 16.5 | ||
Potential Evapotranspiration (mm) | RCP 4.5 | 1055.6 | 1083.8 | 1112.2 | 1128.2 |
RCP 8.5 | 1086.2 | 1132.3 | 1187.3 | ||
Flow (m³) | RCP 4.5 | 72,969.4 | 76,920.2 | 80,085.9 | 83,982.0 |
RCP 8.5 | 76,431.5 | 81,937.2 | 90,826.7 |
Variables | Scenario | S1 (2011–2040) | S2 (2041–2070) | S3 (2071–2099) |
---|---|---|---|---|
Precipitation (%) | RCP 4.5 | 3.85 | 7.51 | 11.32 |
RCP 8.5 | 3.68 | 9.26 | 17.82 | |
Temperature (°C) | RCP 4.5 | 0.90 | 1.78 | 2.29 |
RCP 8.5 | 0.99 | 2.42 | 4.07 | |
Potential Evapotranspiration (%) | RCP 4.5 | 2.67 | 5.37 | 6.88 |
RCP 8.5 | 2.90 | 7.27 | 12.48 | |
Flow (%) | RCP 4.5 | 5.43 | 9.71 | 15.11 |
RCP 8.5 | 4.74 | 12.26 | 24.40 |
Variables | Flow (%) | |||||
---|---|---|---|---|---|---|
Seasons | RCP 4.5 | RCP 8.5 | ||||
S1 (2011–2040) | S2 (2041–2070) | S3 (2071–2099) | S1 (2011–2040) | S2 (2041–2070) | S3 (2071–2099) | |
Spring | −0.85 | 7.22 | 14.63 | 4.41 | 7.89 | 19.37 |
Summer | 9.48 | 10.97 | 17.13 | 4.90 | 13.49 | 28.25 |
Autumn | 3.17 | 12.13 | 15.86 | 7.59 | 15.94 | 26.09 |
Winter | −7.02 | −5.00 | −4.47 | −6.09 | −2.75 | −5.12 |
Scenario | Period | Flow (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | ||
RCP 4.5 | S1 | −2.47 | −11.95 | −1.74 | −3.37 | 1.79 | 5.66 | 7.79 | 12.42 | 9.12 | −4.58 | −13.94 | −5.33 |
S2 | −7.59 | −6.00 | 9.16 | 0.84 | 11.77 | 14.79 | 9.55 | 10.74 | 16.20 | 1.09 | 11.28 | −2.25 | |
S3 | −8.70 | −5.80 | 5.48 | 12.79 | 22.16 | 23.09 | 15.15 | 16.34 | 19.27 | 11.95 | 5.52 | −0.59 | |
RCP 8.5 | S1 | −3.18 | −9.30 | 0.13 | 4.06 | 7.26 | 12.25 | 7.20 | −0.51 | 10.95 | 2.63 | −1.29 | −6.04 |
S2 | −4.74 | 3.80 | 2.11 | 2.41 | 16.23 | 18.95 | 13.50 | 11.15 | 20.36 | 12.34 | −0.89 | −9.24 | |
S3 | −6.62 | −2.30 | 13.01 | 18.64 | 24.29 | 27.24 | 25.51 | 31.11 | 31.61 | 25.17 | 1.45 | −8.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Jung, E.; Jung, I.; Cho, J. Does Future Climate Bring Greater Streamflow Simulated by the HSPF Model to South Korea? Water 2020, 12, 1884. https://doi.org/10.3390/w12071884
Park J, Jung E, Jung I, Cho J. Does Future Climate Bring Greater Streamflow Simulated by the HSPF Model to South Korea? Water. 2020; 12(7):1884. https://doi.org/10.3390/w12071884
Chicago/Turabian StylePark, Jihoon, Euntae Jung, Imgook Jung, and Jaepil Cho. 2020. "Does Future Climate Bring Greater Streamflow Simulated by the HSPF Model to South Korea?" Water 12, no. 7: 1884. https://doi.org/10.3390/w12071884
APA StylePark, J., Jung, E., Jung, I., & Cho, J. (2020). Does Future Climate Bring Greater Streamflow Simulated by the HSPF Model to South Korea? Water, 12(7), 1884. https://doi.org/10.3390/w12071884