Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbents Preparation
2.2. Artificial Fresh Water and Sediment Incubation
2.3. Aqueous Batch Experiments
2.4. Microcosm Experiments
2.4.1. Microcosm Design
2.4.2. Microcosm Operation
2.4.3. Water Sampling and Analyses
2.4.4. Statistical Analysis
3. Results
3.1. Adsorbents Properties
3.2. Adsorption Efficiency
3.3. Microcosm
3.3.1. Mixed Caps Design
3.3.2. Results of Sediment Incubation
3.3.3. pH and ORP
3.3.4. Metal Immobilization
3.3.5. Total Organic Matter (TOC)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouhamed, F.; Elouear, Z.; Bouzid, J.; Ouddane, B. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ. Sci. Pollut. Res. 2016, 23, 15801–15806. [Google Scholar] [CrossRef]
- Kutuniva, J.; Mäkinen, J.; Kauppila, T.; Karppinen, A.; Hellsten, S.; Luukkonen, T.; Lassi, U. Geopolymers as active capping materials for in situ remediation of metal (loid)-contaminated lake sediments. J. Environ. Chem. Eng. 2019, 7, 102852. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, M.Y.; Zeng, G.M.; Yu, Z.G.; Cui, F.; Yang, Z.Z.; Shen, L.Q. Active capping technology: A new environmental remediation of contaminated sediment. Environ. Sci. Pollut. Res. 2016, 23, 4370–4386. [Google Scholar] [CrossRef] [PubMed]
- Race, M.; Nabelkova, J.; Fabbricino, M.; Pirozzi, F.; Raia, P. Analysis of heavy metal sources for urban creeks in the Czech Republic. Water Air Soil Pollut. 2015, 226, 322. [Google Scholar] [CrossRef] [Green Version]
- Salomons, W.; De Rooij, N.M.; Kerdijk, H.; Bril, J. Sediments as a source for contaminants? Hydrobiologia 1987, 149, 13–30. [Google Scholar] [CrossRef]
- Zoumis, T.; Schmidt, A.; Grigorova, L.; Calmano, W. Contaminants in sediments: Remobilisation and demobilisation. Sci. Total Environ. 2001, 266, 195–202. [Google Scholar] [CrossRef]
- Hsu, T.C. Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. J. Hazard. Mater. 2009, 171, 995–1000. [Google Scholar] [CrossRef]
- Jiang, M.Q.; Jin, X.Y.; Lu, X.Q.; Chen, Z.L. Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination 2010, 252, 33–39. [Google Scholar] [CrossRef]
- Latifi, Z.; Jalali, M. Measuring and simulating Co (II) sorption on waste calcite, zeolite and kaolinite. Nat. Resour. Res. 2019, 1–15. [Google Scholar] [CrossRef]
- Jalees, M.I.; Farooq, M.U.; Basheer, S.; Asghar, S. Removal of Heavy Metals from Drinking Water Using Chikni Mitti (Kaolinite): Isotherm and Kinetics. Arabian J. Sci. Eng. 2019, 44, 6351–6359. [Google Scholar] [CrossRef]
- Alasadi, A.; Khaili, F.; Awwad, A. Adsorption of Cu (II), Ni (II) and Zn (II) ions by nano kaolinite: Thermodynamics and kinetics studies. Chem. Int. 2019, 5, 258–268. [Google Scholar]
- Jeong, H.Y.; Klaue, B.; Blum, J.D.; Hayes, K.F. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environ. Sci. Technol. 2007, 44, 7699–7705. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; He, F.; Zhao, D.; Barnett, M.O. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res. 2009, 43, 5171–5179. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Gong, J.L.; Zeng, G.M.; Niu, Q.Y.; Zhang, H.Y.; Niu, C.G.; Yan, M.; Deng, J.-H. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem. Eng. J. 2010, 162, 487–494. [Google Scholar] [CrossRef]
- Jang, S.H.; Min, B.G.; Jeong, Y.G.; Lyoo, W.S.; Lee, S.C. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. J. Hazard. Mater. 2008, 152, 1285–1292. [Google Scholar] [CrossRef]
- Krestou, A.; Xenidis, A.; Panias, D. Mechanism of aqueous uranium (VI) uptake by hydroxyapatite. Miner. Eng. 2004, 17, 373–381. [Google Scholar] [CrossRef]
- Narwade, V.N.; Khairnar, R.S.; Kokol, V. In situ synthesized hydroxyapatite—Cellulose nanofibrils as biosorbents for heavy metal ions removal. J. Polym. Environ. 2018, 26, 2130–2141. [Google Scholar] [CrossRef]
- Kumar, G.S.; Girija, E.K.; Venkatesh, M.; Karunakaran, G.; Kolesnikov, E.; Kuznetsov, D. One step method to synthesize flower-like hydroxyapatite architecture using mussel shell bio-waste as a calcium source. Ceram. Int. 2017, 43, 3457–3461. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, J.; Clark, M.; Yu, Y. Adsorption of copper to different biogenic oyster shell structures. Appl. Surf. Sci. 2014, 311, 264–272. [Google Scholar] [CrossRef]
- Moon, D.H.; Wazne, M.; Cheong, K.H.; Chang, Y.Y.; Baek, K.; Ok, Y.S.; Park, J.H. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environ. Sci. Pollut. Res. 2015, 22, 11162–11169. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Yang, J.E.; Ro, H.M.; Lee, Y.H.; Ok, Y.S. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicol. Environ. Saf. 2012, 79, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Lee, S.S.; Lim, J.E.; Lee, S.E.; Cho, J.S.; Moon, D.H.; Hashimoto, Y.; Ok, Y.S. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere. 2014, 95, 433–441. [Google Scholar] [CrossRef] [PubMed]
- EPA Taiwan. Investigation of Sediment Pollution Sources and Transmission Mode-Taking Key Rivers as Examples; Taiwan Environmental Protection Administration: Taipei, Taiwan, 2011; EPA-100-GA102-02-A232. [Google Scholar]
- ASTM D2765-16. Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics; ASTM International: West Conshohocken, PA, USA, 2016; Available online: www.astm.org (accessed on 1 July 2020).
- Wu, S.C.; Tsou, H.K.; Hsu, H.C.; Hsu, S.K.; Liou, S.P.; Ho, W.F. A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram. Int. 2013, 39, 8183–8188. [Google Scholar] [CrossRef]
- Trinkunaite–Felsen, J.; Prichodko, A.; Semasko, M.; Skaudzius, R.; Beganskiene, A.; Kareiva, A. Synthesis and characterization of iron-doped/substituted calcium hydroxyapatite from seashells Macoma balthica (L.). Adv. Powder Technol. 2015, 26, 1287–1293. [Google Scholar] [CrossRef]
- Sobczak–Kupiec, A.; Malina, D.; Kijkowska, R.; Wzorek, Z. Comparative study of hydroxyapatite prepared by the authors with selected commercially available ceramics. Digest J. Nanomater. Biostructures 2012, 7, 385–391. [Google Scholar]
- Lewis, P.A. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms; EPA, Environmental Monitoring Systems Laboratory: Cincinnati, OH, USA, 1994. [Google Scholar]
- Ting, Y.; Chen, C.; Ch’ng, B.L.; Wang, Y.L.; Hsi, H.C. Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment. J. Hazard. Mater. 2018, 354, 116–124. [Google Scholar] [CrossRef]
- Ting, Y.; Ch’ng, B.L.; Chen, C.; Ou, M.Y.; Cheng, Y.H.; Hsu, C.J.; Hsi, H.C. A simulation study of mercury immobilization in estuary sediment microcosm by activated carbon/clay-based thin-layer capping under artificial flow and turbation. Sci. Total Environ. 2020, 708, 135068. [Google Scholar] [CrossRef]
- Kwapinski, W.; Byrne, C.M.; Kryachko, E.; Wolfram, P.; Adley, C.; Leahy, J.J.; Hayes, M.H.; Novotny, E. Biochar from biomass and waste. Waste Biomass Valoriz. 2010, 1, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Kay, M.I.; Young, R.A.; Posner, A.S. Crystal structure of hydroxyapatite. Nature 1964, 204, 1050–1052. [Google Scholar] [CrossRef]
- Wang, X.; Yu, R.; Wang, P.; Chen, F.; Yu, H. Co-modification of F− and Fe (III) ions as a facile strategy towards effective separation of photogenerated electrons and holes. Appl. Surf. Sci. 2015, 351, 66–73. [Google Scholar] [CrossRef]
- Fuller, C.C.; Bargar, J.R.; Davis, J.A.; Piana, M.J. Mechanisms of uranium interactions with hydroxyapatite: Implications for groundwater remediation. Environ. Sci. Technol. 2002, 36, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Lee, D.K.; Ali, M.A.; Kim, P.J. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Manag. 2008, 28, 2702–2708. [Google Scholar] [CrossRef] [PubMed]
- Glatstein, D.A.; Francisca, F.M. Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite. Appl. Clay Sci. 2015, 118, 61–67. [Google Scholar] [CrossRef]
- Singh, S.P.; Ma, L.Q.; Tack, F.M.; Verloo, M.G. Trace metal leachability of land-Disposed dredged sediments. J. Environ. Qual. 2000, 29, 1124–1132. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, A.; Li, M.; Zhang, X. Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. J. Chem. 2013, 434012. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Huang, B.; Luo, N.; Huang, M.; Zhang, Q.; Zeng, G. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ. 2018, 635, 92–99. [Google Scholar] [CrossRef]
- Calmano, W.; Hong, J.; Förstner, U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. Technol. 1993, 28, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, A.S.; Horne, A.J.; Sedlak, D.L. Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures: Implications for engineered wetlands. Environ. Sci. Technol. 2003, 37, 3018–3023. [Google Scholar] [CrossRef]
- Parks, J.M.; Johs, A.; Podar, M.; Bridou, R.; Hurt, R.A.; Smith, S.D.; Brandt, C.C.; Palumbo, A.V. The genetic basis for bacterial mercury methylation. Science 2013, 339, 1332–1335. [Google Scholar] [CrossRef] [Green Version]
- Bravo, A.G.; Bouchet, S.; Tolu, J.; Björn, E.; Mateos-Rivera, A.; Bertilsson, S. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
1 | - |
Adsorbent | SBET (m2 g−1) | Pore Size (nm) | Vtotal (cm3 g−1) |
---|---|---|---|
Kaolinite | 23.3 | 14.0 | 0.082 |
FeS | 106.2 | 60.2 | 0.042 |
CB | 93.0 | 17.3 | 0.376 |
HAP | 367.4 | 9.2 | 0.501 |
OSP | 0.06 | 4.8 | 0.011 |
Adsorbent | C (wt%) | N (wt%) | H (wt%) | O (wt%) | S (wt%) | |
---|---|---|---|---|---|---|
Kaolinite | 0.03 | 0.15 | 1.43 | 10.88 | 0.05 | |
FeS | - | |||||
CB | 77.87 | 0.46 | 1.02 | 1.6 | 2.53 | |
HAP | 0.00 | 0.11 | 1.71 | 13.24 | 0.00 | |
OSP | 11.61 | 0.20 | 0.55 | 32.29 | 0.07 |
Metal | C0 (mg L−1) | Kaolinite | FeS | CB | HAP | OSP |
---|---|---|---|---|---|---|
Ni | 10 | 2.04 ± 0.50 | 10.73 ± 1.98 | 2.60 ± 0.27 | 38.85 ± 4.36 | 76.47 ± 2.73 |
30 | 0.86 ± 0.12 | 4.96 ± 0.91 | 0.60 ± 0.53 | 17.11 ± 7.56 | 12.99 ± 1.19 | |
50 | 0.41 ± 0.15 | 4.63 ± 0.48 | 1.37 ± 0.72 | 16.62 ± 3.98 | 6.85 ± 1.81 | |
Cr | 10 | 22.15 ± 1.66 | 30.65 ± 3.85 | 42.00 ± 1.41 | 102.58 ± 0.15 | 103.13 ± 0.03 |
30 | 7.38 ± 1.61 | 7.88 ± 1.63 | 6.98 ± 3.11 | 67.81 ± 2.30 | 105.18 ± 0.07 | |
50 | 3.73 ± 1.10 | 3.07 ± 0.77 | 6.19 ± 5.09 | 35.06 ± 0.73 | 59.58 ± 0.90 | |
Cu | 10 | −1.13 ± 0.95 | 23.45 ± 5.41 | 52.80 ± 0.21 | 98.39 ± 1.65 | 19.43 ± 1.17 |
30 | −0.20 ± 0.11 | 11.89 ± 8.29 | 18.27 ± 0.41 | 52.90 ± 1.85 | 3.82 ± 0.76 | |
50 | 3.69 ± 1.83 | 10.78 ± 0.69 | 15.91 ± 4.83 | 52.41 ± 4.46 | 16.05 ± 1.14 | |
Zn | 10 | −6.63 ± 2.65 | 2.09 ± 6.73 | −29.32 ± 10.30 | 58.88 ± 14.26 | 52.71 ± 21.53 |
30 | 5.86 ± 0.81 | 10.55 ± 1.03 | 3.47 ± 1.62 | 64.56 ± 1.20 | 62.30 ± 0.98 | |
50 | 3.69 ± 0.45 | 6.71 ± 1.33 | 1.44 ± 0.00 | 44.38 ± 5.02 | 30.62 ± 1.21 | |
Hg | 0.2 | 2.93 ± 1.23 | 83.37 ± 9.65 | 80.30 ± 8.55 | 12.48 ± 9.35 | 35.32 ± 3.81 |
0.6 | −2.36 ± 1.15 | 101.12 ± 3.15 | 74.70 ± 24.47 | 5.92 ± 3.47 | 14.43 ± 8.85 | |
1 | −0.50 ± 1.75 | 91.51 ± 2.10 | 86.40 ± 5.09 | 18.86 ± 9.43 | 12.86 ± 5.70 |
Column | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
kaolinite (wt%) | 10 | 10 | 10 | 10 | - | - |
FeS (wt%) | 2.5 | - | 5 | 2.5 | 2.5 | |
CB (wt%) | 2.5 | 5 | - | 2.5 | 2.5 | |
HAP (wt%) | 35 | 35 | 35 | 5 | 35 | |
OSP (wt%) | 50 | 50 | 50 | 80 | 50 | |
Total (wt%) | 100 | 100 | 100 | 100 | 90 |
Metal | Sediment (mg kg−1) | Supernatant (mg L−1) | ||
---|---|---|---|---|
Before | Design | After | ||
Ni | 61.35 ± 1.46 | 400 | 519.59 ± 9.52 | 133.46 ± 0.98 |
Cr | 102.16 ± 0.63 | 400 | 593.96 ± 2.81 | 0.16 ± 0.002 |
Cu | 94.64 ± 2.38 | 1000 | 1383.30 ± 6.58 | 17.71 ± 0.12 |
Zn | 373.70 ± 12.18 | 1000 | 1579.13 ± 14.31 | 358.79 ± 1.06 |
THg | 0.20 ± 0.03 | 50 | 72.32 ± 1.96 | 0. 03 ± 0.008 |
MeHg | 1.50 × 10−4 ± 2.54 × 10−5 | − | 8.56 × 10−3 ± 3.23 × 10−3 | − |
Column | Ni (n = 14) (mg L−1) | Cr (n = 14) (mg L−1) | Cu (n = 14) (mg L−1) | Zn (n = 14) (mg L−1) | THg (n = 14) (μg L−1) | MeHg (n = 12) (ng L−1) |
---|---|---|---|---|---|---|
1 | 0.091 ± 0.189b | 0.000 ± 0.000a | 0.013 ± 0.036a | 0.150 ± 0.354b | 0.145 ± 0.109c | 2.09 ± 2.68bc |
2 | 0.162 ± 0.157b | 0.015 ± 0.025a | 0.012 ± 0.030a | 0.140 ± 0.289b | 0.382 ± 0.463ab | 0.535 ± 0.622c |
3 | 0.064 ± 0.126b | 0.015 ± 0.025a | 0.010 ± 0.027a | 0.090 ± 0.182b | 0.233 ± 0.166bc | 6.06 ± 6.09ab |
4 | 0.140 ± 0.200b | 0.016 ± 0.026a | 0.012 ± 0.031a | 0.131 ± 0.385b | 0.288 ± 0.373abc | 9.18 ± 10.2a |
5 | 0.079 ± 0.165b | 0.015 ± 0.025a | 0.012 ± 0.031a | 0.135 ± 0.311b | 0.178 ± 0.194bc | 2.85 ± 3.25bc |
6 | 0.315 ± 0.161a | 0.015 ± 0.025a | 0.018 ± 0.035a | 0.498 ± 0.288a | 0.496 ± 0.222a | 1.56 ± 2.85c |
Column | Ni (n = 6) (mg L−1) | Zn (n = 6) (mg L−1) | THg (n = 6) (μg L−1) | MeHg (n = 6) (ng L−1) |
---|---|---|---|---|
1 | 0.029 ± 0.017ab | 0.024 ± 0.038b | 0.151 ± 0.094b | 0.453 ± 0.544b |
2 | 0.029 ± 0.017ab | 0.033 ± 0.022ab | 0.182 ± 0.162b | 0.605 ± 0.672b |
3 | 0.009 ± 0.010c | 0.017 ± 0.023b | 0.100 ± 0.096b | 1.29 ± 0.729b |
4 | 0.016 ± 0.012bc | 0.049 ± 0.076ab | 0.121 ± 0.106b | 1.42 ± 0.532b |
5 | 0.015 ± 0.005bc | 0.038 ± 0.039ab | 0.113 ± 0.057b | 0.721 ± 0.311b |
6 | 0.035 ± 0.011a | 0.078 ± 0.036a | 0.433 ± 0.251a | 9.80 ± 8.20a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, M.-Y.; Ting, Y.; Ch’ng, B.-L.; Chen, C.; Cheng, Y.-H.; Chang, T.-C.; Hsi, H.-C. Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk. Water 2020, 12, 1886. https://doi.org/10.3390/w12071886
Ou M-Y, Ting Y, Ch’ng B-L, Chen C, Cheng Y-H, Chang T-C, Hsi H-C. Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk. Water. 2020; 12(7):1886. https://doi.org/10.3390/w12071886
Chicago/Turabian StyleOu, Meng-Yuan, Yu Ting, Boon-Lek Ch’ng, Chi Chen, Yung-Hua Cheng, Tien-Chin Chang, and Hsing-Cheng Hsi. 2020. "Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk" Water 12, no. 7: 1886. https://doi.org/10.3390/w12071886
APA StyleOu, M. -Y., Ting, Y., Ch’ng, B. -L., Chen, C., Cheng, Y. -H., Chang, T. -C., & Hsi, H. -C. (2020). Using Mixed Active Capping to Remediate Multiple Potential Toxic Metal Contaminated Sediment for Reducing Environmental Risk. Water, 12(7), 1886. https://doi.org/10.3390/w12071886