Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations
Abstract
:1. Introduction
2. The Study Area
2.1. General Setting and Climate
2.2. Hydrographic Network
2.3. Geological and Geomorphological Framework
2.4. Mineralization
3. Materials and Methods
3.1. Field Observations and Sampling
- LU1: Loose sands locally cemented; frequent mollusk fragments; wet color 7.5 YR 4/6; 0.5 m thick (base of the excavation). Sample ORB1 was collected at 5.3 m from the ground level.
- LU2: Gravel, sand and mud arranged in graded levels; dark thin layers, probably consisting of iron and manganese oxides; rhizoconcrections and pedorelicts; erosional contact at the base; 1.6 m thick. Sample ORB2 was collected at 4.7 m from the ground level.
- LU3: Soil with primary granular structure; gradational lower contact; wet color 5YR 3/4; 1 m thick. Sample ORB3 was collected at 3.1 m from the ground level.
- LU4: Loose gravel layer with centimetric pebbles with an erosional contact at the base; 0.4 m thick. Not sampled.
- LU5: Soil with primary granular structure; gradational lower contact; wet color 5YR 4/4; 2 m thick. Given the thickness, three samples were collected from this unit: ORB4, ORB5 and ORB6, at 1.8 m, 1 m and 0.2 m, respectively, from the ground level.
- LU1: Loose sands locally cemented; frequent mollusk fragments; wet color 7.5 YR 4/6 with the basal part slightly darker than LU1 of Section A; 2.2 m thick (base of the excavation).
- LU5: Soil with primary granular structure; gradational lower contact; wet color 5YR 4/4; 2.8 m thick.
3.2. Sample Preparation and Laboratory Analyses
4. Results
4.1. Grain-Size Distribution and Mineralogy
4.2. Chemistry
4.2.1. Major Elements
4.2.2. Trace and Rare Earth Elements (REEs)
4.2.3. Mercury and Arsenic Concentrations and Mobility
5. Discussion
5.1. Major Components Geochemistry and Interpretation of the Sections
5.2. Trace Elements Geochemistry
5.3. Mercury and Arsenic
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burgess, N.M. Mercury in Biota and Its Effect. In Mercury: Sources, Cycles and Effects; Parsons, M.B., Percival, J.B., Eds.; Mineralogical Association of Canada: Halifax, NS, Canada, 2005; pp. 235–258. [Google Scholar]
- Takizawa, Y. Epidemiology of Mercury Poisoning. In The Biogeochemistry of Mercury in the Environment; Nriagu, J.O., Ed.; Elsevier/North-Holland Biomedical Press: Amsterdam, The Netherlands, 1979; pp. 325–366. [Google Scholar]
- Nriagu, J.O. Legacy of Mercury Pollution. Nature 1993, 363–589. [Google Scholar] [CrossRef]
- Duker, A.A.; Carranza, E.J.M.; Hale, M. Arsenic Geochemistry and Health. Environ. Int. 2005, 31, 631–641. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic Round the World: A Review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Morgan, H.; De Búrca, R.; Martin, I.; Jeffries, J. Soil Guideline Values for Mercury in Soil; Environment Agency: Bristol, UK, 2009. [Google Scholar]
- Lamborg, C.H.; Bowman, K.; Hammerschmidt, C.; Gilmour, C.; Munson, K.M.; Selin, N.; Tseng, C.M. Mercury in The Anthropocene Ocean. Oceanography 2014, 27, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Selin, N.E. Global Biogeochemical Cycling of Mercury: A Review. Annu. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, W.F.; Lamborg, C.H. Geochemistry of Mercury in the Environment. In Treatise on Geochemistry; Sherwood Lollar, B., Holland, H., Turekian, K., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2003; Volume 9, pp. 107–148. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Reimann, C.; Matschullat, J.; Birke, M.; Salminen, R. Arsenic Distribution in the Environment: The Effects of Scale. Appl. Geochem. 2009, 24, 1147–1167. [Google Scholar] [CrossRef]
- Gosar, M.; Pirc, S.; Bidovec, M. Mercury in the Idrijca River Sediments as a Reflection of Mining and Smelting Activities of the Idrija Mercury Mine. J. Geochem. Explor. 1997, 58, 125–131. [Google Scholar] [CrossRef]
- Rytuba, B.J.J.; Kotlyar, B.B.; Wilkerson, G.; Olson, J. Geochemistry of Selected Mercury Mine-Tailings in the Parkfield Mercury District, California. In USGS Open-File Reports; U.S. Geological Survey: California, CA, USA, 2001. [Google Scholar]
- Gray, J.E.; Hines, M.E.; Higueras, P.L.; Adatto, I.; Lasorsa, B.K. Mercury Speciation and Microbial Transformations in Mine Wastes, Stream Sediments, and Surface Waters at the Almadén Mining District, Spain. Environ. Sci. Technol. 2004, 38, 4285–4292. [Google Scholar] [CrossRef] [Green Version]
- Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P. Concentration, Distribution, and Translocation of Mercury and Methylmercury in Mine-Waste, Sediment, Soil, Water, and Fish Collected near the Abbadia San Salvatore Mercury Mine, Monte Amiata District, Italy. Sci. Total Environ. 2012, 414, 318–327. [Google Scholar] [CrossRef]
- Kulikova, T.; Hiller, E.; Jurkovič, Ľ.; Filová, L.; Šottník, P.; Lacina, P. Total Mercury, Chromium, Nickel and Other Trace Chemical Element Contents in Soils at an Old Cinnabar Mine Site (Merník, Slovakia): Anthropogenic versus Natural Sources of Soil Contamination. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef] [PubMed]
- Piatak, N.M.; Seal, R.R.; Hammarstrom, J.M. Mineralogical and Geochemical Controls on the Release of Trace Elements from Slag Produced by Base- and Precious-Metal Smelting at Abandoned Mine Sites. Appl. Geochem. 2004, 19, 1039–1064. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Alvarez-Ayuso, E. Arsenic in Soils and Waters and Its Relation to Geology and Mining Activities (Salamanca Province, Spain). J. Geochem. Explor. 2003, 80, 69–79. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.; Benvenuti, M.G.; Innocenti, A.; Mascaro, L.; Paolieri, M.; Rossato, L.; Tanelli, G. Arsenic Distribution in the Quaternary Sediments of the Median Valley of the Pecora Stream (Grosseto, Italy). Brownfield Sites II Assess. Rehabil. Dev. 2004, 201–209. [Google Scholar] [CrossRef]
- Dini, A. Ore Deposits, Industrial Minerals and Geothermal Resources. Period. Mineral. 2003, 72, 41–52. [Google Scholar]
- Ferrara, R.; Maserti, B.E.; Mazzolai, B.; Di Francesco, F.; Edner, H.; Svanberg, S.; Wallinder, E. Atmospheric Mercury in Abandoned Mine Structures and Restored Mine Buildings at Mt. Amiata, Italy. In Mercury Contaminated Sites. Environmental Science; Ebinghaus, R., Turne, R.R.R., De Lacerda, L.D., Vasiliev, O., Salomons, W., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 249–257. [Google Scholar] [CrossRef]
- Strappa, O. Storia Delle Miniere Di Mercurio Del Monte Amiata. L’Industria Mineraria 1977, 28, 252–439. [Google Scholar]
- Cipriani, C.; Tanelli, G. Risorse Minerarie Ed Industria Estrattiva in Toscana. Atti e Memorie dell’Accademia Toscana di Scienze e Lettere “La Colombaria” 1983, 48, 1–4. [Google Scholar]
- Zifferero, A. Miniere e Metallurgia Estrattiva in Etruria Meridionale: Per Una Lettura Critica Di Alcuni Dati Archeologici e Minerari. Stud. Etruschi 1991, 57, 201–241. [Google Scholar]
- Dini, A. Miniere e Minerali Del Distretto Mercurifero Del Monte Amiata. In Il Vulcano di Monte Amiata; Principe, C., Lavorini, G., Vezzoli, L., Eds.; ESA: Nola, LA, USA, 2017; pp. 343–369. [Google Scholar]
- Arisi Rota, F.; Brondi, A.; Dessau, G.; Franzini, M.; SMMA; SMS; Stea, B.; Vighi, L. I Giacimenti Minerari—Giacimenti Dell’area Del Mt. Amiata. In La Toscana Meridionale; Succ. Fusi: Pavia, Italy, 1971; pp. 442–501. [Google Scholar]
- Puxeddu, M. Structure and Late Cenozoic Evolution of the Upper Lithosphere in Southwest Tuscany (Italy). Tectonophysics 1984, 101, 357–382. [Google Scholar] [CrossRef]
- Peccerillo, A.; Conticelli, S.; Manetti, P. Petrological Characteristics and the Genesis of the Recent Magmatism of Southern Tuscany and Northern Latium. Period. Mineral. 1987, 56, 157–172. [Google Scholar]
- Arisi Rota, F.; Vighi, L. Le Mineralizzazioni a Pirite Ed a Solfuri Misti Della Toscana Meridionale. In La Toscana Meridionale; Succ. Fusi: Pavia, Italy, 1971; pp. 368–423. [Google Scholar]
- Tanelli, G.; Lattanzi, P. Pyritic Ores of Southern Tuscany, Italy. In International Congress on Applied Mineralogy, ICAM 81; De Villiers, J., Cawthorn, P., Eds.; Special Publication, Geological Society of South Africa: Johannesburg, South Africa, 1983; pp. 315–323. [Google Scholar]
- Cortecci, G.; Klemm, D.D.; Lattanzi, P.; Tanelli, G.; Wagner, J. A Sulfur Isotope Study on Pyrite Deposits of Southern Tuscany, Italy. Miner. Depos. 1983, 18, 285–297. [Google Scholar] [CrossRef]
- Benvenuti, M.; Mascara, I.; Corsini, F.; Lattanzi, P.; Parrini, P.; Tanelli, G. Mine Waste Dumps and Heavy Metal Pollution in Abandoned Mining District of Boccheggiano (Southern Tuscany, Italy). Environ. Geol. 1997, 30, 238–243. [Google Scholar] [CrossRef]
- Dall’Aglio, M.; Da Roit, R.; Orlandi, C.; Tonani, F. Prospezione Geochimica Del Mercurio. L’Industria Mineraria 1966, 17, 391–398. [Google Scholar]
- Ferrara, R.; Maserti, B.E.; Breder, R. Mercury in Abiotic and Biotic Compartments of an Area Affected by a Geochemical Anomaly (Mt. Amiata, Italy). Water Air Soil Pollut. 1991, 56, 219–233. [Google Scholar] [CrossRef]
- Cossa, D.; Coquery, M. The Mediterranean Mercury Anomaly, a Geochemical or a Biologocal Issue. In The Mediterranean Sea; Saliot, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 177–208. [Google Scholar] [CrossRef]
- Rimondi, V.; Chiarantini, L.; Lattanzi, P.; Benvenuti, M.; Beutel, M.; Colica, A.; Costagliola, P.; Benedetto, F.D.; Gabbani, G.; Gray, J.E.; et al. Metallogeny, Exploitation and Environmental Impact of the Mt. Amiata Mercury Ore District (Southern Tuscany, Italy). Ital. J. Geosci. 2015, 134, 323–336. [Google Scholar] [CrossRef]
- Vaselli, O.; Nisi, B.; Rappuoli, D.; Bianchi, F.; Cabassi, J.; Venturi, S.; Tassi, F.; Raco, B. Geochemical Characterization of the Ground Waters from the Former Hg-Mining Area of Abbadia San Salvatore (Mt. Amiata, Central Italy): Criticalities and Perspectives for the Reclamation Process. Ital. J. Geosci. 2015, 134, 304–322. [Google Scholar] [CrossRef]
- Vaselli, O.; Higueras, P.; Nisi, B.; María Esbrí, J.; Cabassi, J.; Martínez-Coronado, A.; Tassi, F.; Rappuoli, D. Distribution of Gaseous Hg in the Mercury Mining District of Mt. Amiata (Central Italy): A Geochemical Survey Prior the Reclamation Project. Environ. Res. 2013, 125, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Baroni, F.; Boscagli, A.; Di Lella, L.; Protano, G.; Riccobono, F. Arsenic in Soil and Vegetation of Contaminated Areas in Southern Tuscany (Italy). J. Geochem. Explor. 2004, 81, 1–14. [Google Scholar] [CrossRef]
- Benvenuti, M.; Mascaro, I.; Corsini, F.; Costagliola, P.; Parrini, P.; Tanelli, G.; Lattanzi, P. Environmental Problems Related to Sulfide Mining in Tuscany. Chron. Rech. Minière 1999, 534, 29–45. [Google Scholar]
- Mascaro, I.; Benvenuti, M.; Corsini, F.; Costagliola, P.; Lattanzi, P.; Parrini, P.; Tanelli, G. Mine Wastes at the Polymetallic Deposit of Fenice Capanne (Southern Tuscany, Italy). Mineralogy, Geochemistry, and Environmental Impact. Environ. Geol. 2001, 41, 417–429. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.; Chiarantini, L.; Bianchi, S.; Di Benedetto, F.; Paolieri, M.; Rossato, L. Impact of Ancient Metal Smelting on Arsenic Pollution in the Pecora River Valley, Southern Tuscany, Italy. Appl. Geochem. 2008, 23, 1241–1259. [Google Scholar] [CrossRef]
- Singh, M.; Müller, G.; Singh, I.B. Geogenic Distribution and Baseline Concentration of Heavy Metals in Sediments of the Ganges River, India. J. Geochem. Explor. 2003, 80, 1–17. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.M.; Benvenuti, M.G.; Di Benedetto, F.; Lattanzi, P. Quaternary Sediment Geochemistry as a Proxy for Toxic Element Source: A Case Study of Arsenic in the Pecora Valley (Southern Tuscany, Italy). Chem. Geol. 2010, 270, 80–89. [Google Scholar] [CrossRef]
- Sarti, G.; Sammartino, I.; Amorosi, A. Geochemical Anomalies of Potentially Hazardous Elements Reflect Catchment Geology: An Example from the Tyrrhenian Coast of Italy. Sci. Total Environ. 2020, 714, 136870. [Google Scholar] [CrossRef]
- Focardi, S. Caratterizzazione Ecotossicologica Dei Sedimenti e Degli Organismi Della Laguna Di Orbetello; University of Siena: Siena, Italy, 2003. [Google Scholar]
- Focardi, S. Relazione Tecnico Scientifica Relativa Alla Caratterizzazione Ambientale Dell’area Ex-Sitoco Perimetrazioe a Mare; University of Siena: Siena, Italy, 2005. [Google Scholar]
- Aa. Vv. Piano Di Indagini Finalizzato Alla Bonifica Ed Al Risanamento Ambientale Della Laguna Di Orbetello; ICRAM and University of Siena: Rome, Italy, 2008. [Google Scholar]
- ISPRA. Interventi per Il Risanamento Delle Aree Lagunari Di Orbetello—Laguna Di Levante; ISPRA: Rome, Italy, 2009. [Google Scholar]
- ISPRA. Interventi per Il Risanamento Delle Aree Lagunari Di Orbetello—Laguna Di Ponente; ISPRA: Rome, Italy, 2009. [Google Scholar]
- Grassi, S.; Netti, R. Sea Water Intrusion and Mercury Pollution of Some Coastal Aquifers in the Province of Grosseto (Southern Tuscany—Italy). J. Hydrol. 2000, 237, 198–211. [Google Scholar] [CrossRef]
- Protano, G.; Riccobono, F.; Sabatini, G. Does Salt Water Intrusion Constitute a Mercury Contamination Risk for Coastal Fresh Water Aquifers? Environ. Pollut. 2000, 110, 451–458. [Google Scholar] [CrossRef]
- Salleolini, M.; Sandrelli, F.; Biserni, G.; Marchetti, M.R.; Nocchi, M.; Focardi, S.; Protano, G.; Pizzetti, E.; Bianchi, S.; Fanciulletti, F. Studio Idrogeologico Finalizzato Alla Simulazione Degli Effetti Dell’emungimento Delle Acque Sotterranee Da Parte Degli Allevamenti Ittici Dell’area Orbetellana e Di Ansedonia. Relazione Finale; Volume A, Univesity of Siena and Giano Ambiente srl: Siena, Italy, 2005. [Google Scholar]
- Salleolini, M.; Marchetti, M.R.; Nocchi, M.; Geol, D.; Bianchi, S.; Fanciulletti, F.; Tonelli, D. Studio Geologico, Idrogeologico e Idrogeochimico Finalizzato Alla Valutazione Dell’intrusione Salina Negli Acquiferi Della Zona Costiera Compresa Fra Il Fiume Osa e Il Lago Di Burano—Relazione Finale; University of Siena and Giano Ambiente srl: Siena, Italy, 2009. [Google Scholar]
- Bombelli, V.; Lenzi, M. Italy—The Orbetello Lagoon and the Tuscan Coast. In Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication; Schramm, W., Nienhuis, P.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 331–337. [Google Scholar] [CrossRef]
- Tanelli, G. Mineralizzazioni Metallifere e Minerogenesi Della Toscana. Mem. Della Soc. Geol. Ital. 1983, 25, 91–109. [Google Scholar]
- Peel, M.; Finlayson, B.; McMahon, T. Update World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Carmignani, L.; Kligfield, R. Crustal Extension in the Northern Apennines: The Transition from Compression to Extension in the Alpi Apuane Core Complex. Tectonics 1990, 9, 1275–1303. [Google Scholar] [CrossRef]
- Brogi, A.; Liotta, D. Highly Extended Terrains, Lateral Segmentation of the Substratum, and Basin Development: The Middle-Late Miocene Radicondoli Basin (Inner Northern Apennines, Italy). Tectonics 2008, 27, 1–20. [Google Scholar] [CrossRef]
- Signorini, R. Note Illustrative Foglio 135—Orbetello; Poligrafica & Cartevalori Ercolano (NA): Napoli, Italy, 1967. [Google Scholar]
- Pandeli, E.; Bertini, G.; Orti, L. Inquadramento Geologico Regionale Dell’area Del Monte Amiata. In Il Vulcano di Monte Amiata; Principe, C., Lavorini, G., Vezzoli, L.M., Eds.; ESA: Nola, Italy, 2017; pp. 21–54. [Google Scholar]
- Federici, P.R.; Mazzanti, R. Note Sulle Pianure Costiere Della Toscana. Mem. Della Soc. Geogr. Ital. 1995, 53, 165–270. [Google Scholar]
- Mazzini, I.; Anadon, P.; Barbieri, M.; Castorina, F.; Ferreli, L.; Gliozzi, E.; Mola, M.; Vittori, E. Late Quaternary Sea-Level Changes along the Tyrrhenian Coast near Orbetello (Tuscany, Central Italy): Palaeoenvironmental Reconstruction Using Ostracods. Mar. Micropaleontol. 1999, 37, 289–311. [Google Scholar] [CrossRef]
- Coltorti, M.; Ravani, S. Caratteri Geomorfologici Della Fascia Costiera Compresa Tra La Foce Del Fiume Albegna, La Laguna Di Orbetello Ed Ansedonia. In Paesaggi d’Acque, La Laguna di Orbetello e il Monte Argentario tra Preistoria ed Età Romana; Negroni Catacchio, N., Cardosa, M., Dolfini, A., Eds.; Centro Studi di Preistoria e Archeologia, Milano: Milan, Italy, 2017; pp. 48–63. [Google Scholar]
- Lattanzi, P. Epithermal Precious Metal Deposits of Italy-an Overview. Miner. Depos. 1999, 34, 630–638. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landforms 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Franzini, M.; Leoni, L.; Saitta, M. Revisione Di Una Metodologia Analitica per Fluorescenza-X, Basata Sulla Correzione Completa Degli Effetti Di Matrice. Rend. Soc. Ital. Miner. Petrol. 1975, 31, 365–378. [Google Scholar]
- Lezzerini, M.; Tamponi, M.; Bertoli, M. Reproducibility, Precision and Trueness of X-RAY Fluorescence Data for Mineralogical and/or Petrographic Purposes. Atti della Soc. Toscana Sci. Nat. Mem. Ser. A 2013, 120, 67–73. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Schwager, B.; Stoll, B.; Wilson, S.A.; Haug, G.H.; Andreae, M.O.; Enzweiler, J. Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials. Geostand. Geoanalytical Res. 2016, 40, 333–350. [Google Scholar] [CrossRef]
- Venturi, S.; Vaselli, O.; Rossato, L.; Tassi, F.; Nisi, B.; Pennisi, M.; Cabassi, J.; Bicocchi, G. Anthropogenic Inputs of Boron in the Groundwater System from an Industrial Area near Arezzo (Tuscany, Central Italy). Appl. Geochem. 2015, 63, 146–157. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA: Washington, DC, USA, 2014. [Google Scholar]
- McLennan, S.M. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochem. Geophys. Geosyst. 2001, 2. [Google Scholar] [CrossRef]
- Sawyer, E.W. The Influence of Source Rock Type, Chemical Weathering and Sorting on the Geochemistry of Clastic Sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chem. Geol. 1986, 55, 77–95. [Google Scholar] [CrossRef]
- Bossio, A.; Foresi, L.M.; Mazzei, R.; Salvatorini, G.; Sandrelli, F.; Bilotti, M.; Colli, A.; Rossetto, R. Geology and Stratigraphy of the Southern Sector of the Neogene Albegna River Basin (Grosseto, Tuscany, Italy). Geol. Rom. 2003, 37, 165–173. [Google Scholar]
- Fralick, P.W.; Kronberg, B.I. Geochemical Discrimination of Clastic Sedimentary Rock Sources. Sediment. Geol. 1997, 113, 111–124. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Palo Alto, CA, USA, 1985. [Google Scholar]
- Masi, U.; Tucci, P. Geochemical Features of the ‘Calcare Cavernoso’ from the Monte Argentario Area (Southern Tuscany) and Genetic Implications. Geol. Rom. 1993, 29, 155–161. [Google Scholar]
- Feng, R.; Kerrich, R. Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada: Implications for Provenance and Tectonic Setting. Geochim. Cosmochim. Acta 1990, 54, 1061–1081. [Google Scholar] [CrossRef]
- Wronkiewicz, D.J.; Condie, K.C. Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance. Geochim. Cosmochim. Acta 1987, 51, 2401–2416. [Google Scholar] [CrossRef]
- Sposito, G. The Chemistry of Soils; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- McLennan, S.M. Weathering and Global Denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Fedoroff, N.; Courty, M.A. Revisiting the Genesis of Red Mediterranean Soils. Turkish J. Earth Sci. 2013, 22, 359–375. [Google Scholar] [CrossRef]
- Barbieri, M.; Nigro, A.; Sappa, G. Soil Contamination Evaluation by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Senses Sci. 2015, 2, 94–97. [Google Scholar] [CrossRef]
- Protano, G.; Riccobono, F.; Sabatini, G. La Cartografia Geochimica Della Toscana Meridionale: Criteri Di Realizzazione e Rilevanza Ambientale Attraverso Gli Esempi Di Hg, As, Sb, Pb e Cd. Mem. Descr. Della Cart. Geol. d’Italia 1998, 55, 109–140. [Google Scholar]
- Horstman, E. The Distribution of Lithium, Rubidium, and Caesium in Igneous and Sedimentary Rocks. Geochim. Cosmochim. Acta 1957, 12, 1–28. [Google Scholar] [CrossRef]
- Protano, G.; Riccobono, F. High Contents of Rare Earth Elements (REEs) in Stream Waters of a Cu-Pb-Zn Mining Area. Environ. Pollut. 2002, 117, 499–514. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A Review on the Potentiality of Rare Earth Elements to Trace Pedogenetic Processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Significance of the Rare Earths in Geochemistry and Cosmochemistry. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K., Eyring, J., Eyring, L., Eds.; Elsevier Science Publishers B.V.: Norh-Holland, The Netherlands, 1988; Volume 11, pp. 485–578. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Baroni, F.; Protano, G.; Riccobono, F. Mercury Content of the Rocks of Tuscany. Atti Accad. Fisiocratici Siena 1994, 15, 59–67. [Google Scholar]
- Ackermann, F. A Procedure for Correcting the Grain Size Effect in Heavy Metal Analyses of Estuarine and Coastal Sediments. Environ. Technol. Lett. 1980, 1, 518–527. [Google Scholar] [CrossRef]
- Kocman, D.; Bloom, N.S.; Akagi, H.; Telmer, K.; Hylander, L.; Fajon, V.; Jereb, V.; Jaćimović, R.; Ikingura, J.R.; Horvat, M. Preparation and Characterization of a Soil Reference Material from a Mercury Contaminated Site for Comparability Studies. J. Environ. Manag. 2006, 81, 146–154. [Google Scholar] [CrossRef]
Sample | Mineralogical Composition | |
---|---|---|
Soil | ORB6 | quartz, feldspars, phyllosilicates, calcite |
ORB5 | quartz, feldspars, phyllosilicates, calcite | |
ORB4 | quartz, feldspars, phyllosilicates, calcite | |
ORB3 | quartz, feldspars, phyllosilicates, calcite | |
Sediment | ORB2 | calcite, quartz, feldspars, dolomite, phyllosilicates |
ORB1 | quartz, calcite, feldspars, phyllosilicates, dolomite | |
ORB7 | quartz, calcite, feldspars, phyllosilicates, dolomite |
Na2O | MgO | Al2O3 | SiO2 | P2O5 | K2O | CaO | TiO2 | MnO | Fe2O3 | LOI | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Mean | 0.35 | 2.98 | 18.87 | 56.45 | 0.12 | 4.01 | 0.97 | 1.15 | 0.22 | 9.85 | 5.03 |
Min. | 0.29 | 2.63 | 17.03 | 54.75 | 0.09 | 3.95 | 0.93 | 1.12 | 0.20 | 9.41 | 3.65 | |
Max. | 0.42 | 3.39 | 19.92 | 60.33 | 0.14 | 4.07 | 1.01 | 1.17 | 0.26 | 10.29 | 5.79 | |
Sediment | Mean | 0.45 | 2.72 | 7.53 | 36.72 | 0.13 | 2.08 | 25.05 | 0.56 | 0.24 | 8.93 | 15.59 |
Min. | 0.30 | 1.86 | 4.54 | 24.85 | 0.10 | 1.95 | 19.97 | 0.45 | 0.22 | 6.56 | 11.96 | |
Max. | 0.58 | 4.40 | 9.35 | 42.89 | 0.16 | 2.22 | 34.41 | 0.68 | 0.26 | 10.65 | 21.92 |
Soil | Sediment | ||||||
---|---|---|---|---|---|---|---|
Mean | Min. | Max. | Mean | Min. | Max. | UCC | |
Li | 87 | 61 | 114 | 40 | 34 | 50 | 20 |
Be | 3.4 | 2.9 | 4.2 | 3.2 | 1.3 | 4.4 | 3 |
Sc | 15 | 14 | 17 | 9.3 | 7.8 | 10 | 13.6 |
V | 117 | 111 | 127 | 83 | 78 | 90 | 107 |
Cr | 114 | 89 | 146 | 54 | 47 | 60 | 85 |
Co | 17 | 15 | 22 | 11 | 8.2 | 13 | 17 |
Ni | 51 | 45 | 57 | 31 | 25 | 36 | 44 |
Ga | 16 | 14 | 17 | 9.3 | 6.8 | 11 | 17 |
Rb | 133 | 128 | 137 | 89 | 63 | 102 | 112 |
Sr | 185 | 140 | 231 | 474 | 292 | 595 | 350 |
Y | 27 | 26 | 28 | 18 | 13 | 21 | 22 |
Zr | 95 | 86 | 108 | 78 | 43 | 100 | 190 |
Nb | 14 | 13 | 15 | 9.6 | 6.9 | 12 | 12 |
Mo | 2.5 | 1.6 | 4.2 | 0.87 | 0.4 | 1.6 | 1.5 |
Cs | 11 | 9.3 | 12 | 7 | 4.1 | 8.6 | 4.6 |
Ba | 483 | 413 | 547 | 398 | 308 | 462 | 550 |
Hf | 2.7 | 2.6 | 2.8 | 2.1 | 1.3 | 2.7 | 5.8 |
Ta | 0.96 | 0.94 | 0.99 | 0.58 | 0.48 | 0.63 | 1 |
W | 2 | 1.9 | 2.2 | 1.3 | 0.82 | 1.7 | 2 |
Pb | 46 | 35 | 60 | 21 | 18 | 25 | 17 |
Th | 15 | 13 | 16 | 11 | 6.1 | 14 | 10.7 |
U | 2.2 | 1.9 | 2.5 | 1.9 | 1.8 | 2 | 2.8 |
La | 43 | 40 | 45 | 32 | 21 | 38 | 30 |
Ce | 92 | 85 | 99 | 67 | 40 | 82 | 64 |
Pr | 11 | 10 | 12 | 8.1 | 5.9 | 9.6 | 7.1 |
Nd | 42 | 39 | 46 | 30 | 23 | 36 | 26 |
Sm | 8.3 | 7.9 | 9 | 6 | 4.4 | 7.1 | 4.5 |
Eu | 1.8 | 1.7 | 1.9 | 1.3 | 0.91 | 1.6 | 0.88 |
Gd | 6.9 | 6.5 | 7.4 | 5 | 3.6 | 6 | 3.8 |
Tb | 1 | 0.97 | 1.1 | 0.69 | 0.5 | 0.79 | 0.64 |
Dy | 5.3 | 5.1 | 5.5 | 3.6 | 2.6 | 4.1 | 3.5 |
Ho | 0.98 | 0.94 | 1 | 0.65 | 0.47 | 0.74 | 0.8 |
Er | 2.6 | 2.5 | 2.6 | 1.7 | 1.3 | 1.9 | 2.3 |
Tm | 0.36 | 0.34 | 0.37 | 0.22 | 0.16 | 0.26 | 0.33 |
Yb | 2.2 | 2 | 2.3 | 1.3 | 1 | 1.5 | 2.2 |
Lu | 0.31 | 0.29 | 0.32 | 0.19 | 0.13 | 0.22 | 0.32 |
Hg (mg/kg) | As (mg/kg) | ||||
---|---|---|---|---|---|
Sample | Grain-Size < 2 mm | Grain-Size < 0.25 mm | Grain-Size < 2 mm | Grain-Size < 0.25 mm | |
Soil | ORB6 | 1.1 | - | 29.6 | - |
ORB5 | 1.5 | - | 25.4 | - | |
ORB4 | 1.5 | - | 30.2 | - | |
ORB3 | 2.7 | - | 27.8 | - | |
Sediment | ORB2 | 1.0 | 2.5 | 15.8 | 20.5 |
ORB1 | 0.2 | 0.2 | 36.2 | 36.7 | |
ORB7 | 0.5 | 0.3 | 44.9 | 45.9 |
Hg | As | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sample | Grain-Size < 2 mm | Grain-Size < 0.25 mm | Grain-Size < 2 mm | Grain-Size < 0.25 mm | |||||
µg/L | % leached | µg/L | % leached | µg/L | % leached | µg/L | % leached | ||
Soil | ORB6 | 1.2 | 1.1 | - | - | 2.1 | 0.1 | - | - |
ORB5 | 0.6 | 0.4 | - | - | 2.4 | 0.1 | - | - | |
ORB4 | 3.2 | 2.1 | - | - | 2.4 | 0.1 | - | - | |
ORB3 | 0.9 | 0.3 | - | - | 2.2 | 0.1 | - | - | |
Sediment | ORB2 | 1.1 | 1.1 | 1.9 | 0.8 | 6.7 | 0.4 | 9.2 | 0.4 |
ORB1 | 9.7 | 48.5 | 0.5 | 2.5 | 33.2 | 0.9 | 34.3 | 0.9 | |
ORB7 | 1.4 | 2.8 | 0.6 | 2.0 | 36.7 | 0.8 | 42.2 | 0.9 |
Soil | Sediment | ||||||
---|---|---|---|---|---|---|---|
ORB6 | ORB5 | ORB4 | ORB3 | ORB2 | ORB1 | ORB7 | |
CIA | 79 | 75 | 77 | 78 | 59 | 69 | 69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquetti, F.; Vaselli, O.; Zanchetta, G.; Nisi, B.; Lezzerini, M.; Bini, M.; Mele, D. Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations. Water 2020, 12, 1998. https://doi.org/10.3390/w12071998
Pasquetti F, Vaselli O, Zanchetta G, Nisi B, Lezzerini M, Bini M, Mele D. Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations. Water. 2020; 12(7):1998. https://doi.org/10.3390/w12071998
Chicago/Turabian StylePasquetti, Francesca, Orlando Vaselli, Giovanni Zanchetta, Barbara Nisi, Marco Lezzerini, Monica Bini, and Daniela Mele. 2020. "Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations" Water 12, no. 7: 1998. https://doi.org/10.3390/w12071998
APA StylePasquetti, F., Vaselli, O., Zanchetta, G., Nisi, B., Lezzerini, M., Bini, M., & Mele, D. (2020). Sedimentological, Mineralogical and Geochemical Features of Late Quaternary Sediment Profiles from the Southern Tuscany Hg Mercury District (Italy): Evidence for the Presence of Pre-Industrial Mercury and Arsenic Concentrations. Water, 12(7), 1998. https://doi.org/10.3390/w12071998