Modeling Green Roof Potential to Mitigate Urban Flooding in a Chinese City
Abstract
:1. Introduction
- Few studies focus on the application potential of GRS in the MLRYR region with its unique climate condition that is the main factor determining the performance of GRS. In the MLRYR region, the studies on GRS mainly focus on landscape design, vegetation selection, and energy saving [38,39,40], and only a few studies on the stormwater retention capacity [41,42,43]. These studies, however, did not aim at the special climate characteristics of MLRYR, nor did they run the simulation for a long period with the long-term rainfall data. They only used the experimental method to analyze the short-term rainfalls. Therefore, it is necessary to study long-term rainfall for many years and short-term rainfall with different intensities according to the rainfall characteristics of MLRYR, especially the unique plum rain season every year.
- Previous research did not give a comprehensive analysis of the important effect of evapotranspiration in the hydrodynamic process of GRS [44,45,46,47]. We therefore need to better understand the evapotranspiration of GRS by analyzing the Potential Evapotranspiration (PET), Actual Evapotranspiration (AET), and Reference Evapotranspiration (RET).
- Although there are many researches on the retention and detention of GRS, these studies did not analyze the mitigation potential of GRS for urban flooding by calculating the overload of Combined Sewage System/Storm Water System (CSS/SWS), which is the most direct part to determine whether urban flooding will occur.
- Many studies have recognized the effect of soil layer on the retention efficiency of GRS, but the sensitivity of soil parameters was not comprehensively analyzed which is important because each soil parameter has a different effect on the retention results. The sensitivity analysis of soil parameters will be helpful to the structural design of GRS in future studies, so as to obtain better retention efficiency.
- What are the impacts of the GRS and IGRS on hydrology characters (e.g., surface runoff, flood, evaporation, and infiltration) of an urban catchment in Nanchang that has typical rainfall characteristics of MLRYR?
- Based on the comprehensive analysis of PET, AET, and RET, what role does evapotranspiration play in the hydrological cycle of GRS?
- Does the GRS or IGRS have the potential to be applied in cities like Nanchang?
2. Methods
2.1. Study Site
2.2. Methodology
2.2.1. Comparison between TRS and GRS
Modeling of TRS and GRS
- q: rainfall intensity (10−3 m3 s−1 ha−1)
- t: rainfall duration (min)
- P: recurrence period (year)
- The diameter of the conduit is calculated on the basis of Chézy formula:
- D: conduit diameter (m)
- v: flow velocity (m s−1)
- n: manning coefficient
- R: hydraulic radius (m)
- i: conduit slope (%)
- : surface runoff coefficient
- q: rainfall intensity (10−3 m3 s−1 ha−1)
- A: catchment area (ha)
Sensitivity Analysis of Soil Parameters
Evapotranspiration
2.2.2. Comparison between GRS and IGRS
3. Results and Discussion
3.1. Single Event Simulation
3.1.1. Sensitivity Analysis
3.1.2. Runoff Retention of GRS
3.1.3. Mitigation Conditions of Flooding Nodes and Overloaded Conduits
3.2. Continuous Simulations
3.3. Performance of the IGRS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Data Availability Statement
References
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Chen, C.F. Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecol. Eng. 2013, 52, 51–58. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build. Environ. 2012, 48, 57–65. [Google Scholar] [CrossRef]
- Li, S.P.; Hou, W.; Feng, T.C. Decadal Variation of Summer Dryness/Wetness over the Middle and Lower Reaches of the Yangtze River and the Evolution of Atmospheric Circulation in the Last 52 Years. Chin. J. Atmos. Sci. 2015, 39, 885–900. (In Chinese) [Google Scholar]
- Feng, G.L.; Yang, H.W.; Zhang, S.X.; Wang, K.; Shen, B.Z. A preliminary research on the reason of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in late spring and early summer of 2011. Chin. J. Atmos. Sci. 2012, 36, 1009–1026. (In Chinese) [Google Scholar]
- Wang, W.; Xu, Z.L.; Cai, X.J.; Gao, J. Aridity Characteristic in Middle and Lower Reaches of Yangtze River Area based on Paimer Drought Severity Index Analysis. Plateau Meteorol. 2016, 35, 693–707. (In Chinese) [Google Scholar]
- Wang, Y.Q.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32, 982. [Google Scholar] [CrossRef]
- Ye, D.Z.; Huang, R.H. Advances, results and problems of the project “investigation on laws, causes and predictions of droughts and floods in the Yellow River valley and the Yangtze River valley of China”. Adv. Earth Sci. 1991, 6, 24–29. (In Chinese) [Google Scholar]
- Zhang, Q.; Xu, C.Y.; Zhang, Z.; Chen, Y.D.; Liu, C.L.; Lin, H. Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhang, C.J.; Li, Y.H.; Feng, J.Y.; Wang, J.S. Analysis of Multi-timescale Drought Variation based on Standardized Precipitation Index in China during 1960–2011. J. Desert Res. 2014, 34, 827–834. (In Chinese) [Google Scholar]
- Liu, J.G. A Comparative analysis of current severe drought in the middle and lower reaches of Yangtze River 2011 with historical drought records. China Flood Drought Manag. 2017, 27, 46–50. (In Chinese) [Google Scholar]
- Carson, T.; Keeley, M.; Marasco, E.D.; McGillis, W.; Culligan, P. Assessing methods for predicting green roof rainfall capture: A comparison between full-scale observations and four hydrologic models. Urban Water J. 2015, 25, 1–15. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Claudia, L.; Wellington, M.; Luciene, P.S. Hydrological performance of modular-tray green roof systems for increasing the resilience of mega-cities to climate change. J. Hydrol. 2019, 573, 1057–1066. [Google Scholar]
- Sims, A.W.; Robinson, E.C.; Smart, C.C.; Voogt, J.A.; Hay, G.J.; Lundholm, J.T.; Powers, B.; O’Carroll, D.M. Retention performance of green roofs in three different climate regions. J. Hydrol. 2016, 542, 115–124. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W. Green roof hydrologic performance and modeling: A review. Water Sci. Technol. 2014, 69, 727–738. [Google Scholar] [CrossRef]
- Dunnett, N.; Kingsbury, N. Planting Green Roofs and Living Walls; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.P.; Wei, W.; Si, J.H.; Xi, H.Y. Runoff retention assessment for extensive green roofs and prioritization of structural factors at runoff plot scale using the Taguchi method. Ecol. Eng. 2019, 138, 281–288. [Google Scholar] [CrossRef]
- Simmons, M.T.; Gardiner, B.; Windhager, S.; Tinsley, J. Green roofs are not created equal: The hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban Ecosyst. 2008, 11, 339–348. [Google Scholar] [CrossRef]
- Hilten, R.N.; Lawrence, T.M.; Tollner, W.E. Modeling stormwater runoff from green roofs with HYDRUS-1D. J. Hydrol. 2008, 358, 288–293. [Google Scholar] [CrossRef]
- Talebi, A.; Bagg, S.; Sleep, E.B.; O’Carroll, M.D. Water retention performance of green roof technology: A comparison of canadian climates. Ecol. Eng. 2019, 126, 1–15. [Google Scholar] [CrossRef]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Bollman, A.M.; Desantis, E.G.; DuChanois, M.R.; Etten-Bohm, M.; Olszyk, M.D.; Lambrinos, G.J.; Mayer, M.P. A framework for optimizing hydrologic performance of green roof media. Ecol. Eng. 2019, 140, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, R.C.; Wilkinson, S. Modelling green roof stormwater response for different soil depths. Landsc. Urban Plan. 2016, 153, 170–179. [Google Scholar] [CrossRef]
- Peng, Z.; Smith, C.; Stovin, V. Internal fluctuations in green roof substrate moisture content during storm events: Monitored data and model simulations. J. Hydrol. 2019, 573, 872–884. [Google Scholar] [CrossRef] [Green Version]
- Voyde, E.; Fassman, E.; Simcock, R. Hydrology of an extensive living roof under sub-tropical climate conditions in Auckland, New Zealand. J. Hydrol. 2010, 394, 384–395. [Google Scholar] [CrossRef]
- Yio, M.H.N.; Stovin, V.; Werdin, J.; Vesuviano, G. Experimental analysis of green roof substrate detention characteristics. Water Sci. Technol. 2013, 68, 1477–1486. [Google Scholar] [CrossRef]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green roof stormwater retention: Effects of roof surface, slope, and media depth. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef]
- Yang, J.C.; Bou-Zeid, E. Scale dependence of the benefits and efficiency of green and cool roofs. Landsc. Urban Plan. 2019, 185, 127–140. [Google Scholar] [CrossRef]
- Du, P.Z.; Arndt, K.S.; Farrell, C. Is plant survival on green roofs related to their drought response, water use or climate of origin? Sci. Total Environ. 2019, 667, 25–32. [Google Scholar] [CrossRef]
- Schroder, R.; Mohri, M.; Kiehl, K. AMF inoculation of green roof substrate improves plant performance but reduces drought resistance of native dry grassland species. Ecol. Eng. 2019, 139, 1–9. [Google Scholar] [CrossRef]
- Tran, S.; Lundholm, T.J.; Staniec, M.; Robinson, E.C.; Smart, C.C.; Voogt, A.J.; O’Carroll, M.D. Plant survival and growth on extensive green roofs: A distributed T experiment in three climate regions. Ecol. Eng. 2019, 127, 494–503. [Google Scholar] [CrossRef]
- Wong, G.K.; Jim, C. Quantitative hydrologic performance of extensive green roof under humid-tropical rainfall regime. Ecol. Eng. 2014, 70, 366–378. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Cheng, W.P.; Wei, W.; Deo, C.R. The influence of structural factors on stormwater runoff retention of extensive green roofs: New evidence from scale-based models and real experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Metselaar, K. Water retention and evapotranspiration of green roofs and possible natural vegetation types. Resour. Conserv. Recycl. 2012, 64, 49–55. [Google Scholar] [CrossRef]
- Sendo, T.; Kanechi, M.; Uno, Y.; Inagaki, N. Evaluation of growth and green coverage of ten ornamental species for planting as urban rooftop greening. J. Jpn. Soc. Hortic. Sci. 2010, 79, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Lin, Y.L.; Han, J.; Zhang, G. A review of green roof research and development in China. Renew. Sustain. Energy Rev. 2014, 40, 633–648. [Google Scholar] [CrossRef]
- Li, Z.L.; Chou, D.H.C.; Yao, J.; Zheng, X.; Zhao, W.; Zhilei, L.; Dhc, C.; Jian, Y.; Xiao, Z.; Wei, Z. The effectiveness of adding horizontal greening and vertical greening to courtyard areas of existing buildings in the hot summer cold winter region of China: A case study for Ningbo. Energy Build. 2019, 196, 227–239. [Google Scholar] [CrossRef]
- Jiang, C.X. Roof greening practice of Minhang district of Shanghai. Chin. Landsc. Archit. 2011, 8, 92–95. [Google Scholar]
- Liu, Z.F.; Chen, C. A study on the application of low impact development of green roof in large underground buildings based on SWMM. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2018, 42, 165–173. [Google Scholar]
- Li, S.X.; Qin, H.P.; Peng, Y.N.; Khu, T.S. Modelling the combined effects of runoff reduction and increase in evapotranspiration for green roofs with a storage layer. Ecol. Eng. 2019, 127, 302–311. [Google Scholar] [CrossRef]
- Shen, Q.R.; Li, T.; Cao, Y.; Pan, Y. Extensive green roof substrate composition based on sludge recycling. Environ. Sci. 2017, 38, 2953–2960. [Google Scholar]
- Cascone, S.; Coma, J.; Gagliano, A.; Perez, G. The evapotranspiration process in green roofs: A review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Li, J.S.; Yin, H.W.; Kong, F.H. Effects of a green roof on stormwater regulation and cost-benefit analysis. Environ. Sci. 2019, 40, 1803–1810. [Google Scholar]
- Ebrahimian, A.; Wadzuk, B.; Traver, R. Evapotranspiration in green stormwater infrastructure systems. Sci. Total Environ. 2019, 688, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Szota, C.; Fletcher, D.T.; Willianms, S.G.N.; Farrell, C. Green roof storage capacity can be more important than evapotranspiration for retention performance. J. Environ. Manag. 2019, 232, 404–412. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, R.; Zhang, Z.S.; Yan, Q. Do climate simulations support the existence of East Asian monsoon climate in the Late Eocene? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 509, 47–57. [Google Scholar] [CrossRef]
- Ge, Q.S.; Guo, X.F.; Zheng, J.Y.; Hao, Z.X. Meiyu in the middle and lower reaches of the Yangtze River since 1736. Chin. Sci. Bull. 2007, 52, 107–114. [Google Scholar] [CrossRef]
- Lu, J.M.; Ju, J.H.; Tao, S.Y. Re-Discussion on East Asian Meiyu Rainy Season. Atmos. Ocean. Sci. Lett. 2013, 6, 279–283. [Google Scholar]
- Zhou, H.G. Study on the mesoscale structure of the heavy rainfall on Meiyu front with dual-Doppler RADAR. Atmos. Res. 2009, 93, 335–357. [Google Scholar] [CrossRef]
- Tao, S.Y.; Chen, L.X. A review of recent research on the East Asian summer monsoon in China. In Monsoon Meteorology; Chang, C.P., Krishnamurti, T.N., Eds.; Oxford University Press: Oxford, UK, 1987; pp. 60–92. [Google Scholar]
- Tao, S.Y.; Zhu, W.M.; Zhao, W. Discussion on interannual variability of Meiyu. Chin. J. Atmos. Sci. 1998, 12, 13–21. (In Chinese) [Google Scholar]
- Ding, Y.H. Summer monsoon rainfalls in China. J. Meteor. Soc. Jpn. 1992, 70, 373–396. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H. Seasonal march of the East Asian monsoon. In East Asian Monsoon; Chang, C.P., Ed.; World Scientific: Singapore, 2004; p. 564. [Google Scholar]
- Wang, T.; Miao, J.P.; Sun, J.Q.; Fu, Y.-H. Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 C global warming target. Adv. Clim. Chang. Res. 2018, 9, 102–111. [Google Scholar] [CrossRef]
- Wang, B.; Lin, H. Rainy season of the Asian-Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Chan, J.C.L. The East Asian summer monsoon: An overview, Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Ding, Y.H.; Ren, G.Y.; Zhao, Z.C.; Xu, Y.; Luo, Y.; Li, Q.; Zhang, J. Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci. 2007, 24, 954–971. [Google Scholar] [CrossRef]
- Allen, G.R.; Pereira, S.L.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage Paper No.56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Weather in China. Available online: http://www.weather.com.cn/cityintro/101240101.shtml (accessed on 10 June 2017).
- Liu, X.Y.; Ma, Z.X.; Yang, Y.G.; Wang, D.Y. The groundwater characteristics and its emergency water source in Nanchang. Resour. Surv. Environ. 2006, 27, 33–38. (In Chinese) [Google Scholar]
- Lan, Y.Y.; Chen, J.M.; Wang, J.X. Analysis of dynamic characteristics and influencing factors of groundwater in Nanchang city. J. Nanchang Inst. Technol. 2017, 7, 36. (In Chinese) [Google Scholar]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B. The role of extensive green roofs in sustainable development. HortScience 2006, 41, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Hui, S.C.M. Benefits and Potential Applications of Green Roof Systems in Hong Kong. In Proceedings of the 2nd Megacities International Conference, Guangzhou, China, 1–2 December 2006. [Google Scholar]
- Burszta-Adamiak, E.; Mrowiec, M. Modelling of green roofs’ hydrologic performance using EPA’s SWMM. Water Sci. Technol. 2013, 68, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Versini, P.A.; Ramier, D.; Berthier, E.; De Gouvello, B. Assessment of the hydrological impacts of green roof: From building scale to basin scale. J. Hydrol. 2015, 524, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Li, J.F.; Zhang, Q.; Chen, Y.D.; Singh, P.V. Future joint probability behaviors of precipitation extremes across China: Spatiotemporal patterns and implications for flood and drought hazards. Glob. Planet. Chang. 2015, 124, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhai, P.M.; Cai, J.H. Research on the Relationship of ENSO and the Frequency of Extreme Precipitation Events in China. Adv. Clim. Chang. Res. 2011, 2, 101–107. [Google Scholar] [CrossRef]
- Huang, S.Z.; Huang, Q.; Chang, J.X.; Leng, G.; Chen, Y. Variations in precipitation and runoff from a multivariate perspective in the Wei River Basin, China. Quat. Int. 2017, 440, 30–39. [Google Scholar] [CrossRef]
- Huo, Z.Y.; Ruan, Z.; Wei, M.; Ge, R.; Li, F.; Ruan, Y. Statistical characteristics of raindrop size distribution in south China summer based on the vertical structure derived from VPR-CFMCW. Atmos. Res. 2019, 222, 47–61. [Google Scholar] [CrossRef]
- Zhong, R.; Chen, X.H.; Lai, C.G.; Wang, Z.; Lian, Y.; Yu, H.; Wu, X. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2019, 568, 343–359. [Google Scholar] [CrossRef]
- USEPA. Storm Water Management Model Application Manual; USEPA: Washington, DC, USA, 2009. [Google Scholar]
- Cheng, D.; Chen, Z.H.; Fang, Y. The analysis of the designed storm pattern over Yichang. Torrential Rain Disasters 2015, 34, 249–253. (In Chinese) [Google Scholar]
- Dai, Y.X.; Wang, Z.H.; Dai, L.D.; Cao, Q.; Wang, T. Application of Chicago Hyetograph Method in Design of Short Duration Rainstorm Pattern. Arid Meteorol. 2017, 35, 1061–1069. (In Chinese) [Google Scholar]
- Ni, Z.N.; Li, Q.F.; Du, F.R.; Jiang, H.T. Study on design of rainstorm pattern based on short duration in Nanjing City. J. Water Resour. Water Eng. 2019, 30, 57–62. (In Chinese) [Google Scholar]
- Sun, W.; Shen, J.; Jiang, X.X.; Gu, M.; Wang, W.J.; Xu, X. Research and analysis of storm pattern over Suzhou City. The Formation Mechanisms, Prediction, Early Warning and Risk Assessment of Hydro-meteorological Disasters. In Proceedings of the 35th Annual Meeting of China Meteorological Society, Hefei, China, 24–26 October 2018; Volume 28, pp. 443–448. (In Chinese). [Google Scholar]
- Zhu, Y.N. Selection of Design Rainfall Pattern: Case of Hangzhou. China Water Wastewater 2016, 32, 94–96. (In Chinese) [Google Scholar]
- USEPA. Storm Water Management Model User’s Manual; USEPA: Washington, DC, USA, 2015.
- Lee, J.Y.; Lee, M.J.; Han, M. A pilot study to evaluate runoff quantity from green roofs. J. Environ. Manag. 2015, 152, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, H.G.; Merkley, P.G. Irrigation Fundamentals; Water Resources Publication: Littleton, CO, USA, 1998. [Google Scholar]
- Brutsaert, W.; Stricker, H. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resour. Res. 1979, 15, 443–450. [Google Scholar] [CrossRef]
- Granger, R.J.; Gray, D.M. Evaporation from natural nonsaturated surface. J. Hydrol. 1989, 111, 21–29. [Google Scholar] [CrossRef]
- Ugwu, A.I.; Ugwuanyi, J.U. Performance assessment of Hargreaves model in estimating solar radiation in Abuja using minimum climatological data. Int. J. Phys. Sci. 2011, 6, 7285–7290. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from ambient air temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and irrigation water requirements. In ASCE Manual and Report on Engineering Practice No. 70; ASCE: New York NY, USA, 1990. [Google Scholar]
- Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Evaluation of common evapotranspiration models based on measurements from two extensive green roofs in New York City. Ecol. Eng. 2015, 84, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.Y.; Chen, D. Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol. Process. 2005, 19, 3717–3734. [Google Scholar] [CrossRef]
- Kim, H.; Kaluarachchi, J.J. Complementary relationship for estimating evapotranspiration using the Granger-Gray model: Improvements and comparison with a remote sensing method. Hydrol. Earth Syst. Sci. 2017, 1–28. [Google Scholar] [CrossRef]
- Carmen, B.N.; Hunt, F.W.; Anderson, A.R. Volume Reduction Provided by Eight Residential Disconnected Downspouts in Durham, North Carolina. J. Environ. Eng. 2016, 142, 05016002. [Google Scholar] [CrossRef]
- Carpenter, D.D.; Kaluvakolanu, P. Effect of roof surface type on storm-water runoff from full-scale roofs in a temperate climate. J. Irrig. Drain. Eng. 2011, 137, 161–169. [Google Scholar] [CrossRef]
- Carter, T.L.; Rasmussen, T.C. Hydrologic behavior of vegetated roofs. J. Am. Water Resour. Assoc. 2006, 42, 1261–1274. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Andresen, J.A. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol. Eng. 2007, 31, 225–231. [Google Scholar] [CrossRef]
- Tabares-Velasco, P.C.; Zhao, M.; Peterson, N.; Srebric, J.; Berghage, R. Validation of predictive heat and mass transfer green roof model with extensive green roof field data. Ecol. Eng. 2012, 47, 165–173. [Google Scholar] [CrossRef]
- Kwok, J.; Wong, W.; Lau, L.S. From the ‘urban heat island’ to the ‘green island’? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat Int. 2013, 39, 25–35. [Google Scholar]
- Coutts, A.M.; Daly, E.; Beringer, J.; Tapper, N.J. Assessing practical measures to reduce urban heat: Green and cool roofs. Build. Environ. 2013, 70, 266–276. [Google Scholar] [CrossRef]
Parameters | Surface Runoff (mm) | LID Drainage (mm) | Final Storage (mm) |
---|---|---|---|
Berm Height (mm) | |||
0 (ref) | 1029.123 | 909.530 | 22.613 |
5 | 1029.123 | 909.525 | 22.618 |
Vegetation Volume Fraction | |||
0 (min *) | 1029.123 | 909.530 | 22.613 |
0.2 (max *) | 1029.123 | 909.530 | 22.613 |
Surface Roughness | |||
0.15 (short, prairie) | 1029.123 | 909.530 | 22.613 |
0.24 (dense) | 1029.123 | 909.530 | 22.613 |
0.41 (Bermuda grass) | 1029.123 | 909.530 | 22.613 |
0.04 (ref) | 1029.123 | 909.530 | 22.613 |
Surface Slope (%) | |||
1 (actual data of XIFS) | 1029.123 | 909.530 | 22.613 |
5 | 1029.123 | 909.552 | 22.591 |
20 | 1029.123 | 909.564 | 22.579 |
Conductivity Slope (%) | |||
60 (max *) | 1029.123 | 903.810 | 28.332 |
30 (min *) | 1029.123 | 909.530 | 22.613 |
10 (ref) | 1029.123 | 936.076 | 16.670 |
Drainage Mat Thickness (mm) | |||
25.4 (min *) | 1029.123 | 909.530 | 22.613 |
38.1 | 1029.123 | 909.530 | 22.613 |
50.8 (max *) | 1029.123 | 909.530 | 22.613 |
Drainage Void Fraction | |||
0.5 (min *) | 1029.123 | 909.534 | 22.609 |
0.6 (max *) | 1029.123 | 909.530 | 22.613 |
0.85 (ref) | 1029.123 | 909.522 | 22.622 |
Drainage Roughness Parameters | |||
0.4 (max *) | 1029.123 | 909.530 | 22.613 |
0.1 (min *) | 1029.123 | 909.562 | 22.581 |
0.01 (ref) | 1029.123 | 909.581 | 22.562 |
Parameters | Maximum Data | Minimum Data | Median Data | Average Data | Reference Data | Silt Loam | Silty Clay |
---|---|---|---|---|---|---|---|
saturated hydraulic conductivity (mm hr−1) | 120.396 | 0.254 | 1.524 | 16.002 | 1.016 | 6.604 | 0.508 |
suction head (mm) | 320.04 | 49.022 | 210.058 | 184.450 | 100.076 | 169.926 | 290.068 |
porosity | 0.510 | 0.398 | 0.463 | 0.455 | 0.510 | 0.501 | 0.398 |
field capacity | 0.378 | 0.062 | 0.284 | 0.258 | 0.490 | 0.244 | 0.371 |
wilting point | 0.265 | 0.024 | 0.136 | 0.152 | 0.090 | 0.135 | 0.251 |
Properties | Value |
---|---|
pervious manning overflow | 0.15 |
depth of the depression storage on the pervious portion of the sub-catchment (mm) | 5.08 |
suction head (mm) | 210.06 |
conductivity (mm hr−1) | 1.02 |
initial deficit | 0.15 |
Model Output | Saturated Hydraulic Conductivity | Suction Head | Porosity | Field Capacity | Wilting Point |
---|---|---|---|---|---|
Runoff | 1.3010 | 0.1754 | 0.0263 | 0.0172 | 0.0107 |
Evaporation | 0.1601 | 0.1062 | 0.0040 | 0.0032 | 0.0948 |
Initial Storage | 0.0349 | 0.0446 | 0.5466 | 0.9182 | 1.2905 |
Final Storage | 0.5478 | 0.2741 | 0.4078 | 0.6879 | 0.3064 |
Input Parameter | Value |
---|---|
Soil Layer | |
saturated hydraulic conductivity (mm hr−1) | 167.742 |
suction head (mm) | 169.926 |
Porosity | 0.501 |
field capacity | 0.244 |
wilting point | 0.135 |
substrate thickness (mm) | 150.000 |
conductivity slope | 30 |
Surface layer | |
green roof slope (%) | 2 |
berm height (mm) | 0 |
surface roughness (Manning’s n) | 0.41 |
vegetation volume fraction | 0.2 |
Drainage Mat Layer | |
thickness (mm) | 38 |
void fraction | 0.6 |
roughness (Manning’s n) | 0.4 |
Precipitation Design | Precipitation (mm) | Runoff Volume (mm) | Runoff Coeff. (%) | Peak Runoff (m3/s) | |||
---|---|---|---|---|---|---|---|
TRS | GRS | TRS | GRS | TRS | GRS | ||
2-yr | 30 | 29.79 | 17.32 | 98.70 | 57.41 | 2.58 | 1.77 |
10-yr | 46 | 45.84 | 30.41 | 99.10 | 65.72 | 4.02 | 3.41 |
100-yr | 70 | 70.14 | 50.97 | 99.30 | 72.19 | 6.20 | 5.70 |
Model Output | TRS | GRS |
---|---|---|
Initial LID Storage | 0 | 10 |
Total Precipitation | 2206 | 2206 |
Evaporation Loss | 224 | 256 |
Surface Runoff | 1984 | 1029 |
LID Drainage | 0 | 910 |
Final Storage | 0 | 23 |
Width | Flooding Flow (mm min−1) | |||||
IGRS | GRS | TRS | ||||
10-yr | 100-yr | 10-yr | 100-yr | 10-yr | 100-yr | |
1-m width greenbelt | 2.704 | 16.356 | 2.781 | 16.506 | 9.358 | 24.493 |
2-m width greenbelt | 2.948 | 16.921 | 3.011 | 17.058 | 9.320 | 24.439 |
3-m width greenbelt | 2.871 | 16.805 | 2.952 | 16.978 | 9.189 | 24.298 |
Precipitation Design | Width of Greenbelt (m) | Precipitation (mm) | Runoff Volume (mm) | Runoff Coeff. (%) | Peak Runoff (m3 s−1) | |||
---|---|---|---|---|---|---|---|---|
GRS | IGRS | GRS | IGRS | GRS | IGRS | |||
2yr | 1 | 30 | 16.00 | 15.98 | 53.03 | 52.97 | 1.45 | 1.73 |
2 | 16.00 | 15.95 | 53.03 | 52.87 | 1.47 | 1.77 | ||
3 | 15.85 | 15.80 | 52.54 | 52.37 | 1.45 | 1.74 | ||
10-yr | 1 | 46 | 28.83 | 28.78 | 62.31 | 62.20 | 2.84 | 3.79 |
2 | 28.88 | 28.85 | 62.42 | 62.35 | 2.88 | 3.88 | ||
3 | 28.70 | 28.65 | 62.03 | 61.92 | 2.86 | 3.86 | ||
100yr | 1 | 70 | 49.71 | 49.73 | 70.40 | 70.43 | 5.06 | 7.11 |
2 | 49.73 | 49.73 | 70.43 | 70.43 | 5.13 | 7.27 | ||
3 | 49.50 | 49.48 | 70.10 | 70.08 | 5.10 | 7.23 |
1-m Width Greenbelt | 2-m Width Greenbelt | 3-m Width Greenbelt | ||||
---|---|---|---|---|---|---|
Depth (mm) | GRS | IGRS | GRS | IGRS | GRS | IGRS |
Initial LID Storage | 9 | 9 | 9 | 9 | 9 | 9 |
Total Precipitation | 2206 | 2206 | 2206 | 2206 | 2206 | 2206 |
Evaporation Loss | 234 | 235 | 233 | 234 | 232 | 233 |
Infiltration Loss | 8 | 221 | 16 | 343 | 24 | 428 |
Surface Runoff | 1069 | 1738 | 1062 | 1617 | 1055 | 1533 |
LID Drainage | 883 | 0 | 883 | 0 | 883 | 0 |
Final Storage | 21 | 21 | 21 | 21 | 21 | 21 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Sun, L.; Niu, J.; Riley, W.J. Modeling Green Roof Potential to Mitigate Urban Flooding in a Chinese City. Water 2020, 12, 2082. https://doi.org/10.3390/w12082082
Liu L, Sun L, Niu J, Riley WJ. Modeling Green Roof Potential to Mitigate Urban Flooding in a Chinese City. Water. 2020; 12(8):2082. https://doi.org/10.3390/w12082082
Chicago/Turabian StyleLiu, Li, Liwei Sun, Jie Niu, and William J. Riley. 2020. "Modeling Green Roof Potential to Mitigate Urban Flooding in a Chinese City" Water 12, no. 8: 2082. https://doi.org/10.3390/w12082082
APA StyleLiu, L., Sun, L., Niu, J., & Riley, W. J. (2020). Modeling Green Roof Potential to Mitigate Urban Flooding in a Chinese City. Water, 12(8), 2082. https://doi.org/10.3390/w12082082