Detection of Groundwater Levels Trends Using Innovative Trend Analysis Method in Temperate Climatic Conditions
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Innovative Trend Analysis Method (ITA)
2.4. Mapping
3. Results and Discussions
4. Conclusions
- The ITA reveals a general positive trend for groundwater levels over 50% of wells for annual, winter, and spring seasons. The negative trend for groundwater level was observed for more than 43% for the autumn season followed by summer season with less than 40%.
- For different classes of groundwater level, in the winter and spring seasons, for the depth class of 0–2 m, positive trends were observed (with 83%, respectively 92% of the wells). For groundwater depths between 4 and 6 m, in the summer and autumn season, the most negative trends were observed (with over 64% of wells).
- The ITA index indicates a significant positive increase of the groundwater level for the spring and winter season for the groundwater level depth between 0 and 2 m and 2 and 4 m. Significant negative values of the ITA index were observed for summer and autumn season for the groundwater class of 4–6 m.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Koster, R.D.; Betts, A.K.; Dirmeyer, P.A.; Bierkens, M.; Bennett, K.E.; Déry, S.J.; Evans, J.P.; Fu, R.; Hernandez, F.; Leung, L.R.; et al. Hydroclimatic Variability and Predictability: A Survey of Recent Research. Hydrol. Earth Syst. Sci. 2017, 21, 3777–3798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, S.; van der Gun, J. Groundwater Governance: Key challenges in applying the Global Framework for Action. Hydrogeol. J. 2016, 24, 749–752. [Google Scholar] [CrossRef]
- Tabari, H.; Hosseinzadeh Tallae, P. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011, 396, 313–320. [Google Scholar] [CrossRef]
- Garamhegyi, Y.; Kovács, J.; Pongrácz, R.; Tanos, P.; Hatvani, I.G. Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region. Hydrogeol. J. 2018, 26, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Zhang, G.; Yin, X. Hydrological responses to climate change in Nenjiang River basin, northeastern China. Water Resour. Manag. 2011, 25, 677–689. [Google Scholar] [CrossRef]
- Taye, M.T.; Willems, P.; Block, P. Implications of climate change on hydrological extremes in the Blue Nile basin: A review. J. Hydrol. Reg. Study 2015, 4, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Mittal, N.; Bhave, A.G.; Mishra, A.; Singh, R. Impact of human intrevention and climate change on natural flow regime. Water Resour. Manag. 2016, 30, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Chang, J.; Yao, J.; Wang, Y.; Huang, Q.; Xu, G. Impact of natural climate variability on runoff based on Monte Carlo method. J. Water Clim. Chang. 2017, 10, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Zelenáková, M.; Vido, J.; Portel, M.M.; Purcz, P.; Blištán, P.; Hlavatá, H.; Hluštík, P. Precipitation Trends over Slovakia in the Period 1981–2013. Water 2017, 9, 922. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2012, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.A.; Dodamani, B.M. Trend Analysis of Groundwater Levels and Assessment of Regional Groundwater Drought: Ghataprabha River Basin, India. Nat. Resour. Res. 2019, 28, 631–643. [Google Scholar] [CrossRef]
- Sakizadeh, M.; Mohamed, M.A.M.; Klammler, H. Trend Analysis and Spatial Prediction of Groundwater Levels Using Time Series Forecasting and a Novel Spatio-Temporal Method. Water Resour. Manag. 2019, 33, 1425–1437. [Google Scholar] [CrossRef]
- Șen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- Tabari, H.; Taye, M.T.; Onyutha, C.; Willems, P. Decadal analysis of river flow extremes using quantile-based approaches. Water Resour. Manag. 2017, 31, 3371–3387. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E. Application of the Innovative Trend Analysis Method for the Trend Analysis of Rainfall Anomalies in Southern Italy. Water Resour. Manag. 2018, 32, 4971–4983. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Qian, H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Inter. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Sonali, P.; Nagesh Kumar, D. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 21–217. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparition of Mann-Kendall and innovative trend method for water quality parameters of Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Dabanli, I.; Șen, Z.; Yelegen, M.O.; Șișman, E.; Selek, B.; Guclu, Y.S. Trend assesment by the innovative Șen Method. Water Resour. Manag. 2016, 30, 5193–5203. [Google Scholar] [CrossRef]
- Prăvălie, R.; Piticar, A.; Roșca, B.; Sfîcă, L.; Bandoc, G.; Tiscovschi, A.; Patriche, C.V. Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961-2013. Catena 2018, 172, 295–312. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Piticar, A.; Sfica, L.; Harpa, G.V.; Rosca, C.F.; Tudose, T.; Horvath, C.; Minea, I.; Ciupertea, F.A.; Scripca, A.S. Extreme Temperature and Precipitation Events in Romania; Romanian Academy Press: Bucharest, Romania, 2018. [Google Scholar]
- Croitoru, A.E.; Minea, I. The impact of climate changes on rivers discharge in Eastern Romania. Theor. Appl. Climatol. 2015, 3–4, 1434–4483. [Google Scholar] [CrossRef]
- Minea, I.; Chelariu, O.E. Anomalies and trends of high river flow under temperate climatic conditions in north-eastern part of Romania. J. Water Clim. Chang. 2020. [Google Scholar] [CrossRef] [Green Version]
- Minea, I.; Croitoru, A.E. Groundwater response to changes in precipitations in north-eastern Romania. Environ. Eng. Manag. J. 2017, 16, 643–651. [Google Scholar] [CrossRef]
- Ionesi, L.; Ionesi, B.; Rosca, V.; Lungu, A.; Ionesi, V. Middle and Upper Sarmatian on Moldavian Platform; Romanian Academy Press: Bucharest, Romania, 2005. (In Romanian) [Google Scholar]
- Sandu, I.; Pescaru, V.I.; Poiana, I. Climate of Romania; Romanian Academy Press: Bucharest, Romania, 2008. (In Romanian) [Google Scholar]
- Croitoru, A.E.; Piticar, A.; Burada, D.C. Changes in precipitation extremes in Romania. Quat. Intern. 2016, 415, 325–335. [Google Scholar] [CrossRef]
- Bîrsan, M.V.; Zaharia, L.; Chendes, V.; Branescu, E. Seasonal trends in Romanian streamflow. Hydrol. Process. 2014, 28, 4496–4505. [Google Scholar] [CrossRef]
- Minea, I.; Croitoru, A.E. Climate Changes and their impact on the variation of groundwater level in the Moldavian Plateau (Eastern Romania). In Proceedings of the 2015 SGEM International Multidisciplinary Scientific Geoconferences, Albena, Bulgaria, 18–24 June 2015; pp. 137–145. [Google Scholar] [CrossRef]
- Șen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Haktanir, T.; Citakoglu, H. Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. J. Hydrol. Eng. 2014, 19, 9. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Qian, H. Detection of anomalies and changes of rainfall in the Yellow river basin, China, through two graphical methods. Water 2018, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Minea, I.; Butelcă, D.; Niacşu, L. Groundwater level variation patterns in drought conditions. Case study Bârlad upper basin. Geogr. Napoc. 2012, 1, 75–82. (In Romanian) [Google Scholar]
- Yong, X.; Xiaomin, G.; Shiyang, Y.; Jingli, S.; Yali, C.; Qiulan, Z.; Yong, N. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. Springer Plus 2016, 5, 425. [Google Scholar] [CrossRef] [Green Version]
- Minea, I. Bahlui Drainage Basin-Hydrological Study; Al.I.Cuza Press: Iași, Romania, 2012. (In Romanian) [Google Scholar]
- Repel, A.; Jothiprakash, V.; Zelenáková, M.; Hlavatá, H.; Minea, I. Temporal Analysis of Daily and 10 Minutes of Rainfall of Poprad Station in Eastern Slovakia. Hydrology 2020, 7, 32. [Google Scholar] [CrossRef]
- Bürger, G. On trend detection. Hydro. Proc. 2017, 31, 4039–4042. [Google Scholar] [CrossRef]
- Guslu, Y.S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydroloy 2020, 584, 584. [Google Scholar] [CrossRef]
- Alifujiang, Y.; Abuduwaili, J.; Maihemuti, B.; Emin, B.; Groll, M. Innovative Trend Analysis of Precipitation in the Lake Issyk-Kul Basin, Kyrgyzstan. Atmosphere 2020, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Caloiero, T. Evaluation of rainfall trends in the South Island of New Zealand through the innovative trend analysis (ITA). Theor. Appl. Climatol. 2019, 139, 493–504. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Lin, A.; Zhang, M.; Niu, Z. Innovative trend analysis of solar radiation in China during 1962–2015. Renew. Energy 2018, 119, 675–689. [Google Scholar] [CrossRef]
- Halder, S.; Roy, M.B.; Roy, P.K. Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: A case study of an eastern river basin of West Bengal, India. SN Appl. Sci. 2020, 2, 507. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Lu, Y.; Zheng, C.; Zhang, X.; Zhou, B.; Wu, J. Seasonal and Inter-Annual Variability of Groundwater and Their Responses to Climate Change and Human Activities in Arid and Desert Areas: A Case Study in Yaoba Oasis, Northwest China. Water 2020, 12, 303. [Google Scholar] [CrossRef] [Green Version]
No. | Well Code | Average Depth (m) | Winter | Spring | Summer | Autumn | Annual |
---|---|---|---|---|---|---|---|
1 | RĂDĂUȚI-PRUT F3 | 13 | 0.23 | 0.26 | 0.36 | 0.26 | 0.27 |
2 | RĂDĂUȚI-PRUT F2 | 4 | 0.12 | 0.48 | 0.07 | 0.12 | 0.19 |
3 | RĂDĂUȚI-PRUT F1 | 5 | −0.19 | 0.004 | −0.16 | −0.11 | −0.11 |
4 | DARABANI ORD.I F1 | 6 | 0.94 | 1.33 | 0.24 | 0.44 | 0.74 |
5 | HAVÎRNA F1 | 2.5 | 0.7 | 1.11 | 0.59 | 0.47 | 0.7 |
6 | STÂNCA ORD.II F1 | 7.5 | 0.61 | 0.79 | 0.7 | 0.5 | 0.65 |
7 | EZER ORD.II F1 | 7.5 | 0.34 | 0.46 | 0.14 | 0.24 | 0.29 |
8 | SATU NOU ORD.II F1 | 13.5 | 1.67 | 1.74 | 1.52 | 1.48 | 1.6 |
9 | DOROHOI F1 | 2.5 | 0.77 | 0.56 | 0.64 | 0.69 | 0.67 |
10 | BROSCĂUȚI ORD.II F1 | 10 | 1.53 | 1.64 | 1.82 | 1.63 | 1.65 |
11 | DOROHOI SUD ORD.II F1 | 5 | −0.068 | −0.087 | −0.4 | −0.2 | −0.18 |
12 | CORLĂȚENI F1 | 2 | 1.4 | 1.75 | 0.82 | 0.66 | 1.12 |
13 | SĂVENI F2 | 2 | −0.018 | 0.33 | 0.42 | −0.26 | −0.12 |
14 | SAVENI F1 | 3 | 0.06 | 0.21 | 0.02 | 0.08 | 0.09 |
15 | SADOVENI F1 | 8 | −0.02 | −0.04 | −0.02 | −0.01 | −0.02 |
16 | SADOVENI F3 | 9 | −0.09 | −0.12 | −0.05 | −0.06 | −0.08 |
17 | RIPICENI F2 | 7 | 0.05 | 0.12 | 0.18 | 0.11 | 0.11 |
18 | DÂNGENI F1 | 3 | 0.59 | 1.06 | 0.39 | 0.32 | 0.57 |
19 | DÂNGENI F2 | 2 | 5.96 | 5.82 | 4.43 | 5 | 5.23 |
20 | DÂNGENI F3 | 3 | 1.28 | 1.79 | 1.1 | 0.94 | 1.25 |
21 | MIHĂLĂȘENI F1 | 4 | −1.06 | −1.01 | −1.15 | −1.03 | −1.06 |
22 | ȘTEFĂNEȘTI ORD.II F1 | 31 | 0.04 | 0.27 | 0.03 | 0.04 | 0.03 |
23 | ȘTEFĂNEȘTI F3 | 3.5 | 0.94 | 1.38 | 0.94 | 0.81 | 1.01 |
24 | ȘTEFĂNEȘTI F2 | 6 | 0.13 | 0.22 | 0.2 | 0.16 | 0.17 |
25 | ȘTEFĂNEȘTI F1 | 7 | 0.26 | 0.4 | 0.33 | 0.27 | 0.31 |
26 | MASCĂTENI F2 | 5 | −0.33 | −0.33 | −0.43 | −0.36 | −0.36 |
27 | MASCĂTENI F3 | 6.5 | −0.18 | −0.15 | −0.36 | −0.33 | −0.26 |
28 | MASCĂTENI F4 | 9 | −0.028 | 0.05 | −0.11 | −0.16 | −0.06 |
29 | BĂLUȘENI F2 | 1 | 4.25 | 12.1 | 1.77 | 1.13 | 2.93 |
30 | BĂLUȘENI F1 | 1.5 | 3.18 | 5.55 | 1.33 | 0.78 | 2.07 |
31 | DĂMIDENI SUD F1 | 22.5 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
32 | DRACȘANI F1 | 2 | 0.16 | 0.33 | −0.13 | −0.22 | 0.04 |
33 | COTU RUSI F1 | 4 | 0.31 | 1.7 | 0 | −0.47 | 0.24 |
34 | COTU RUSI F2 | 3.7 | 1.83 | 3.64 | 1.09 | 0.97 | 1.7 |
35 | TODIRENI F2 | 4 | 0 | −0.59 | −0.4 | −0.3 | −0.19 |
36 | CERNEȘTI F1 | 4 | −0.35 | −0.19 | −0.59 | −0.52 | −0.41 |
37 | PRISACANI F2 | 3 | 0.5 | 1.07 | 0 | 0.03 | 0.37 |
38 | PRISACANI F3 | 2 | 0.74 | 1.45 | −0.78 | −0.46 | 0.03 |
39 | PRISACANI F1 | 2.5 | 0.29 | 1.49 | 0.14 | −0.08 | 0.38 |
40 | GLĂVĂNEȘTI F1 | 4 | −0.14 | 0.28 | −0.28 | −0.53 | −0.19 |
41 | GLĂVĂNEȘTI F2 | 5.5 | −0.03 | 0 | −0.39 | −0.4 | −0.22 |
42 | GLĂVĂNEȘTI F3 | 5 | 0.3 | 0.5 | 0.27 | 0.17 | 0.31 |
43 | HÎRLĂU F1 | 3.5 | −1.3 | −1.4 | −1.8 | −0.5 | −1.5 |
44 | CIRNICENI F3 | 3 | −0.61 | −0.74 | −0.75 | −0.75 | −0.71 |
45 | CIRNICENI F2 | 5 | −0.45 | −0.51 | −0.49 | −0.56 | −0.5 |
46 | CIRNICENI F1 | 6 | −0.1 | −0.02 | −0.2 | −0.27 | −0.15 |
47 | CIRNICENI F5 | 2.5 | −0.35 | 0.18 | −0.53 | −0.88 | −0.41 |
48 | CIRNICENI F6 | 3 | −0.19 | 0.01 | −0.54 | −0.58 | −0.33 |
49 | MOINEȘTI ORD.II F1 | 11 | 0.04 | 0.05 | 0.05 | 0.01 | 0.04 |
50 | ȚIGĂNAȘI F2 | 3 | 4.86 | 5.18 | 2.63 | 2.7 | 3.57 |
51 | ȚIGĂNAȘI F3 | 3 | −0.96 | −0.9 | −1.34 | −1.25 | −1.12 |
52 | ȚIGĂNAȘI F1 | 2.5 | 0.21 | 0.19 | −0.85 | −0.67 | −0.34 |
53 | BELCEȘTI F1 | 2 | 0.9 | 2.1 | 1.2 | 0.2 | 1.2 |
54 | BELCEȘTI F4 | 12.5 | 0.07 | 0.1 | 0.1 | 0.02 | 0.08 |
55 | BELCEȘTI F5 | 2 | −0.18 | −0.02 | −0.51 | −0.44 | −0.29 |
56 | BELCEȘTI F6 | 2.5 | −0.9 | −0.7 | −1.1 | −0.2 | 0.9 |
57 | BELCEȘTI F6A | 3 | −0.6 | −0.4 | −0.8 | −0.3 | −0.7 |
58 | BELCEȘTI F1A | 2 | 0.38 | 1.5 | 0.57 | 0.05 | 0.6 |
59 | SPINOASA F1 | 5 | 0.21 | 0.13 | 0.3 | 0.12 | 0.23 |
60 | PODU ILOAIE F2 | 4 | −0.7 | 0.1 | 0.2 | 0.3 | 0.3 |
61 | PODU ILOAIE F3 | 2 | 0.16 | 0.13 | 0.12 | 0.1 | 0.08 |
62 | PODU ILOAIE F4 | 2 | 0.1 | 2.1 | 0.9 | 0.04 | 0.63 |
63 | PODU ILOAIE F5 | 8 | −1.63 | −1.57 | −1.64 | −0.5 | −1.62 |
64 | BANU F3 | 6.4 | 0.16 | 0.16 | 0.06 | 0.04 | 0.13 |
65 | BANU F2 | 4.7 | 0.02 | 0.2 | 0.03 | 0.013 | 0.04 |
66 | BANU F1 | 4 | 0.03 | 0.06 | 0.27 | 0.05 | 0.1 |
67 | DUMEȘTI ORD.II F1 | 15 | 0.01 | 0 | 0 | 0 | 0 |
68 | CRISTEȘTI F5 | 10 | −0.41 | −0.39 | −0.43 | −0.45 | −0.42 |
69 | CRISTEȘTI F1 | 6 | −0.17 | −0.11 | −0.29 | −0.33 | −0.17 |
70 | IAȘI F9 | 5 | −0.17 | −0.18 | −0.51 | −0.46 | −0.33 |
71 | IAȘI F8 | 6 | −0.08 | 0.05 | −0.38 | −0.35 | −0.19 |
Average | 0.35 | 0.74 | 0.12 | 0.10 | 0.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minea, I.; Boicu, D.; Chelariu, O.-E. Detection of Groundwater Levels Trends Using Innovative Trend Analysis Method in Temperate Climatic Conditions. Water 2020, 12, 2129. https://doi.org/10.3390/w12082129
Minea I, Boicu D, Chelariu O-E. Detection of Groundwater Levels Trends Using Innovative Trend Analysis Method in Temperate Climatic Conditions. Water. 2020; 12(8):2129. https://doi.org/10.3390/w12082129
Chicago/Turabian StyleMinea, Ionuț, Daniel Boicu, and Oana-Elena Chelariu. 2020. "Detection of Groundwater Levels Trends Using Innovative Trend Analysis Method in Temperate Climatic Conditions" Water 12, no. 8: 2129. https://doi.org/10.3390/w12082129
APA StyleMinea, I., Boicu, D., & Chelariu, O. -E. (2020). Detection of Groundwater Levels Trends Using Innovative Trend Analysis Method in Temperate Climatic Conditions. Water, 12(8), 2129. https://doi.org/10.3390/w12082129