Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea
Abstract
:1. Introduction
2. Material and Method
2.1. Vertical Land Movements
2.2. Digital Terrain Models
3. Results
3.1. Geographic Descripion of the Areas at Potential Risk of Submersion
3.1.1. Fertilia
3.1.2. Valledoria
3.1.3. Orosei
3.1.4. Bastia
3.1.5. Marina di Campo
3.1.6. Tronto
3.1.7. Sangro
3.1.8. Pescara
3.1.9. Lesina
3.1.10. Brindisi
3.1.11. Larnaka (Cyprus)
3.1.12. Granelli (Italy)
3.1.13. Kerkennah
3.1.14. Stagnone e Saline di Marsala
3.1.15. Mallorca
3.1.16. Ibiza
3.2. New Tectonic Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EO | Earth Observation |
CET | Copernicus European Tourism |
CLIMTOUR | Copernicus Climate Change Service: European Tourism |
DTM | Digital Terrain Model |
GEBCO | General Bathymetric Chart of the Oceans |
GIS | Geographic Information System |
MIS | Marine Isotope Stage |
LiDAR | Light Detection and Ranging |
IPCC AR5 | Intergovernmental Panel on climate change, 2013 |
RCP | Representative Concentration Pathways |
sRMSE | Root Mean Square Error |
SRTM | Shuttle Radar Topography Mission |
RITMARE | is one of the Flag Projects of the Italian Research Program funded by the Ministry of University and Research |
References
- Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, J.A.; Woodworth, P.L.; Aarup, T.; Wilson, W.S. Understanding Sea-Level Rise and Variability; Wiley-Blackwell: Hoboken, NJ, USA, 2010; ISBN 978-1-4443-3452-4. [Google Scholar]
- Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. Climate related sea-level variations over the past two millennia. Proc. Natl. Acad. Sci. USA 2011, 108, 11017–11022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyssignac, B.; Cazenave, A. Sea level: A review of present-day and recent-past changes and variability. J. Geodyn. 2012, 58, 96–109. [Google Scholar] [CrossRef]
- Mitchum, G.T.; Nerem, R.S.; Merrifield, M.A.; Gehrels, W.R. Modern sea level changes estimates. In Understanding Sea Level Rise and Variability; Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S., Eds.; Wiley: Chichester, UK, 2010; pp. 122–138. [Google Scholar]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A.; Matthews, A.P.; Spada, G. Trends and acceleration in global and regional sea levels since 1807. Glob. Planet. Chang. 2014, 113, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Wöppelmann, G.; Marcos, M. Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Toimil, A.; Camus, P.; Losada, I.J.; Le Cozannet, G.; Nicholls, R.J.; Idier, D.; Maspataud, A. Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. Earth-Sci. Rev. 2020, 202, 103110. [Google Scholar] [CrossRef]
- Gornitz, V.; Couch, S.; Hartig, E.K. Impacts of sea level rise in the New York City metropolitan area. Glob. Planet. Chang. 2001, 32, 61–88. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; Betts, H.; Church, J.; Pittock, A.B.; McInnes, K.L.; Jackett, D.R.; McDougall, T.J. Using Sea Level Rise Projections for Urban Planning in Australia. J. Coast. Res. 2004, 20, 586–598. [Google Scholar] [CrossRef]
- Miller, K.G.; Kopp, R.E.; Horton, B.P.; Browning, J.V.; Kemp, A.C. A geological perspective on sea-level rise and its impacts along the U.S. mid-Atlantic coast. Earth’s Future 2013, 1, 3–18. [Google Scholar] [CrossRef]
- Ezer, T.; Atkinson, L.P. Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future 2014, 2, 362–382. [Google Scholar] [CrossRef]
- Rehman, S.; Sahana, M.; Kumar, P.; Ahmed, R.; Sajjad, H. Assessing hazards induced vulnerability in coastal districts of India using site-specific indicators: An integrated approach. GeoJournal 2020. [Google Scholar] [CrossRef]
- Wadey, M.; Brown, S.; Nicholls, R.J.; Haigh, I. Coastal flooding in the Maldives: An assessment of historic events and their implications. Nat. Hazards 2017, 89, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Carreau, P.R.; Gallego, F.J. EU25 Coastal Zone Population Estimates from the Disaggregated Population Density Data 2001; European Commission, DG Joint Research Centre: Brussels, Belgium, 2006. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea-Level Rise by 2100. Science 2013, 342, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmstorf, S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galassi, G.; Spada, G. Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob. Planet. Chang. 2014, 123, 55–66. [Google Scholar] [CrossRef]
- Kopp, R.E.; Kemp, A.C.; Bittermann, K.; Horton, B.P.; Donnelly, J.P.; Gehrels, W.R.; Hay, C.C.; Mitrovica, J.X.; Morrow, E.D.; Rahmstorf, S. Temperature-driven global sea-level variability in the Common Era. Proc. Natl. Acad. Sci. USA 2016, 113, E1434–E1441. [Google Scholar] [CrossRef] [Green Version]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195–11200. [Google Scholar] [CrossRef] [Green Version]
- Zecca, A.; Chiari, L. Lower bounds to future sea-level rise. Glob. Planet. Chang. 2012, 98–99, 1–5. [Google Scholar] [CrossRef]
- Anzidei, M.; Lambeck, K.; Antonioli, F.; Furlani, S.; Mastronuzzi, G.; Serpelloni, E.; Vannucci, G. Coastal structure, sea-level changes and vertical motion of the land in the Mediterranean. Geol. Soc. Lond. Spec. Publ. 2014, 388, 453–479. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S.J. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Savemedcoasts. Available online: http://www.savemedcoasts.eu/ (accessed on 4 April 2020).
- Bonaldo, D.; Antonioli, F.; Archetti, R.; Bezzi, A.; Correggiari, A.; Davolio, S.; De Falco, G.; Fantini, M.; Fontolan, G.; Furlani, S.; et al. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: Lessons and challenges from the Adriatic Sea, Italy. J Coast. Conserv. 2019, 23, 19–37. [Google Scholar] [CrossRef]
- Marcos, M.; Jordà, G.; Gomis, D.; Pérez, B. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob. Planet. Chang. 2011, 77, 116–128. [Google Scholar] [CrossRef]
- Lionello, P.; Conte, D.; Marzo, L.; Scarascia, L. The contrasting effect of increasing mean sea level and decreasing storminess on the maximum water level during storms along the coast of the Mediterranean Sea in the mid 21st century. Glob. Planet. Chang. 2017, 151, 80–91. [Google Scholar] [CrossRef]
- Bonaldo, D.; Bucchignani, E.; Pomaro, A.; Ricchi, A.; Sclavo, M.; Carniel, S. Wind waves in the Adriatic Sea under a severe climate change scenario and implications for the coasts. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Lo Presti, V.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Marsico, A.; Lisco, S.; Presti, V.L.; Antonioli, F.; Amorosi, A.; Anzidei, M.; Deiana, G.; Falco, G.D.; Fontana, A.; Fontolan, G.; et al. Flooding scenario for four Italian coastal plains using three relative sea level rise models. J. Maps 2017, 13, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain—Southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Rizzo, A.; Rosskopf, C.M. Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: The case of Molise region. Environ. Earth Sci. 2018, 77, 371. [Google Scholar] [CrossRef]
- Giordano, L.; Alberico, I.; Ferraro, L.; Marsella, E.; Lirer, F.; Di Fiore, V. A new tool to promote sustainability of coastal zones. The case of Sele plain, southern Italy. Rend. Fis. Acc. Lincei 2013, 24, 113–126. [Google Scholar] [CrossRef]
- Welcome! - IWS I-STORMS Web System. Available online: https://iws.seastorms.eu/ (accessed on 2 May 2020).
- Ferrarin, C.; Valentini, A.; Vodopivec, M.; Klaric, D.; Massaro, G.; Bajo, M.; Pascalis, F.D.; Fadini, A.; Ghezzo, M.; Menegon, S.; et al. Integrated sea storm management strategy: The 29 October 2018 event in the Adriatic Sea. Nat. Hazards Earth Syst. Sci. 2020, 20, 73–93. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Aucelli, P.; Cinque, A.; Mattei, G.; Pappone, G.; Rizzo, A. Studying relative sea level change and correlative adaptation of coastal structures on submerged Roman time ruins nearby Naples (southern Italy). Quat. Int. 2019, 501, 328–348. [Google Scholar] [CrossRef]
- Anzidei, M.; Bosman, A.; Carluccio, R.; Casalbore, D.; Caracciolo, F.D.; Esposito, A.; Nicolosi, I.; Pietrantonio, G.; Vecchio, A.; Carmisciano, C.; et al. Flooding scenarios due to land subsidence and sea-level rise: A case study for Lipari Island (Italy). Terra Nova 2017, 29, 44–51. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Tarascio, S.; de Guidi, G.; Monaco, C.; Barreca, G.; Mazza, G.; Serpelloni, E.; Vecchio, A. Coastal retreat and marine flooding scenario for 2100: A case study along the coast of Maddalena Peninsula (southeastern Sicily). Geogr. Fis. Din. Quat. 2019, 41, 5–16. [Google Scholar] [CrossRef]
- Anzidei, M.; Doumaz, F.; Vecchio, A.; Serpelloni, E.; Pizzimenti, L.; Civico, R.; Greco, M.; Martino, G.; Enei, F. Sea Level Rise Scenario for 2100 A.D. in the Heritage Site of Pyrgi (Santa Severa, Italy). J. Mar. Sci. Eng. 2020, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Ravanelli, R.; Riguzzi, F.; Anzidei, M.; Vecchio, A.; Nigro, L.; Spagnoli, F.; Crespi, M. Sea level rise scenario for 2100 A.D. for the archaeological site of Motya. Rend. Fis. Accad. Lincei 2019, 30, 747–757. [Google Scholar] [CrossRef]
- Perini, L.; Calabrese, L.; Luciani, P.; Olivieri, M.; Galassi, G.; Spada, G. Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: Scenarios and impacts. Nat. Hazards Earth Syst. Sci. 2017, 17, 2271–2287. [Google Scholar] [CrossRef] [Green Version]
- Rovere, A.; Furlani, S.; Benjamin, J.; Fontana, A.; Antonioli, F. MEDFLOOD project: Mediterranean Sea-level change and projection for future FLOODing. Alp. Mediterr. Quat. 2012, 25, 3–5. [Google Scholar]
- Snoussi, M.; Ouchani, T.; Khouakhi, A.; Niang-Diop, I. Impacts of sea-level rise on the Moroccan coastal zone: Quantifying coastal erosion and flooding in the Tangier Bay. Geomorphology 2009, 107, 32–40. [Google Scholar] [CrossRef]
- Azidane, H.; Benmohammadi, A.; Hakkou, M.; Magrane, B.; Haddout, S. A Geospatial approach for assessing the impacts of sea-level rise and flooding on the ! Kenitra coast (Morocco). J. Mater. Environ. Sci. 2018, 9, 1480–1488. [Google Scholar] [CrossRef]
- Scardino, G.; Sabatier, F.; Scicchitano, G.; Piscitelli, A.; Milella, M.; Vecchio, A.; Anzidei, M.; Mastronuzzi, G. Sea-Level Rise and Shoreline Changes Along an Open Sandy Coast: Case Study of Gulf of Taranto, Italy. Water 2020, 12, 1414. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Ferranti, L.; Antonioli, F.; Mauz, B.; Amorosi, A.; Dai Pra, G.; Mastronuzzi, G.; Monaco, C.; Orrù, P.; Pappalardo, M.; Radtke, U.; et al. Markers of the last interglacial sea-level high stand along the coast of Italy: Tectonic implications. Quat. Int. 2006, 145–146, 30–54. [Google Scholar] [CrossRef]
- Ferranti, L.; Antonioli, F.; Anzidei, M.; Monaco, C.; Stocchi, P. The timescale and spatial extent of vertical tectonic motions in Italy: Insights from relative sea-level changes studies. J. Virtual Explor. 2010, 36. [Google Scholar] [CrossRef]
- Antonioli, F.; Ferranti, L.; Fontana, A.; Amorosi, A.; Bondesan, A.; Braitenberg, C.; Dutton, A.; Fontolan, G.; Furlani, S.; Lambeck, K.; et al. Holocene relative sea-level changes and vertical movements along the Italian and Istrian coastlines. Quat. Int. 2009, 206, 102–133. [Google Scholar] [CrossRef]
- Antonioli, F.; Ferranti, L.; Stocchi, P.; Deiana, G.; Lo Presti, V.; Furlani, S.; Marino, C.; Orru, P.; Scicchitano, G.; Trainito, E.; et al. Morphometry and elevation of the last interglacial tidal notches in tectonically stable coasts of the Mediterranean Sea. Earth-Sci. Rev. 2018, 185, 600–623. [Google Scholar] [CrossRef]
- Cobby, D.M.; Mason, D.C.; Davenport, I.J. Image processing of airborne scanning laser altimetry data for improved river flood modelling. ISPRS J. Photogramm. Remote Sens. 2001, 56, 121–138. [Google Scholar] [CrossRef]
- Global Mapper—All-in-One GIS Software. Available online: https://www.bluemarblegeo.com/products/global-mapper.php (accessed on 15 April 2020).
- Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/ (accessed on 15 April 2020).
- EMODnet Bathymetry Viewing and Download Service. Available online: https://portal.emodnet-bathymetry.eu/ (accessed on 15 April 2020).
- Soukissian, T.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies 2017, 10, 1512. [Google Scholar] [CrossRef] [Green Version]
- Parlagreco, L.; Miccadei, E.; Mascioli, F.; Devoti, S.; Silenzi, S.; Antonioli, F.; Di Palo, C. Application of relative sea level rise scenarios to coastal management policy: The case of the Abruzzo Region. In Proceedings of the Geoitalia 2009, Rimini, Italy, 9–11 September 2009; p. 1. [Google Scholar]
- Parlagreco, L.; Mascioli, F.; Miccadei, E.; Antonioli, F.; Gianolla, D.; Devoti, S.; Leoni, G.; Silenzi, S. New data on Holocene relative sea level along the Abruzzo coast (central Adriatic, Italy). Quat. Int. 2011, 232, 179–186. [Google Scholar] [CrossRef]
- Sechi, D.; Andreucci, S.; Stevens, T.; Pascucci, V. Age and significance of late Pleistocene Lithophyllum byssoides intertidal algal ridge, NW Sardinia, Italy. Sediment. Geol. 2020, 400, 105618. [Google Scholar] [CrossRef]
- D’Orefice, M.; Graciotti, R.; Bertini, A.; Fedi, M.; Foresi, L.M.; Ricci, M.; Toti, F. Latest Pleistocene to Holocene environmental changes in the Northern Tyrrhenian area (central Mediterranean). A case study from southern Elba Island. Alp. Mediterr. Quat. 2020, 33, 1–25. [Google Scholar]
- Mastronuzzi, G.; Palmentola, G.; Ricchetti, G. Aspetti dell’evoluzione olocenica della costa pugliese. Mem. Soc. Geol. Ital. 1989, 42, 287–300. [Google Scholar]
- Mastronuzzi, G.; Aringoli, D.; Aucelli, P.P.C.; Baldassarre, M.A.; Bellotti, P.; Bini, M.; Biolchi, S.; Bontempi, S.; Brandolini, P.; Chelli, A.; et al. Geomorphological map of the Italian Coast: From a descriptive to a morphodynamic approach. Geogr. Fis. Din. Quat. 2017, 40, 161–195. [Google Scholar] [CrossRef]
- Amorosi, A.; Bracone, V.; Campo, B.; D’Amico, C.; Rossi, V.; Rosskopf, C.M. A late Quaternary multiple paleovalley system from the Adriatic coastal plain (Biferno River, Southern Italy). Geomorphology 2016, 254, 146–159. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Holocene uplift rates and historical rapid sea-level changes at the Gargano promontory, Italy. J. Quat. Sci. 2002, 17, 593–606. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. The role of strong earthquakes and tsunami in the Late Holocene evolution of the Fortore River coastal plain (Apulia, Italy): A synthesis. Geomorphology 2012, 138, 89–99. [Google Scholar] [CrossRef]
- Refice, A.; Pasquariello, G.; Bovenga, F.; Festa, V.; Acquafredda, P.; Spilotro, G. Investigating uplift in Lesina Marina (Southern Italy) with the aid of persistent scatterer SAR interferometry and in situ measurements. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Teofilo, G.; Festa, V.; Sabato, L.; Spalluto, L.; Tropeano, M. 3D modelling of the Tremiti salt diapir in the Gargano offshore (Adriatic Sea, southern Italy): Constraints on the Tremiti Structure development. Ital. J. Geosci. 2016, 135, 474–485. [Google Scholar] [CrossRef]
- Festa, V.; Fregola, R.A.; Acquafredda, P.; De Giosa, F.; Monno, A.; Ventruti, G. The enigmatic ascent of Ca-sulphate rocks from a deep dense source layer: Evidences of hydration diapirism in the Lesina Marina area (Apulia, southern Italy). Int. J. Earth Sci. (Geol. Rundsch.) 2019, 108, 1897–1912. [Google Scholar] [CrossRef]
- Caporale, F.; De Venuto, G.; Leandro, G.; Spilotro, G. Interventi di mitigazione del rischio da sinkholes nell’area di Lesina marina (Provincia di Foggia, Italia). Mem. Descr. Carta Geol. D’ Ital. 2013, 93, 121–142. [Google Scholar]
- Longhitano, S.G.; Della Luna, R.; Milone, A.L.; Cilumbriello, A.; Caffau, M.; Spilotro, G. The 20,000-years-long sedimentary record of the Lesina coastal system (southern Italy): From alluvial, to tidal, to wave process regime change. Holocene 2016, 26, 678–698. [Google Scholar] [CrossRef]
- Caldara, M.; Simone, O. Coastal changes in the eastern Tavoliere Plain (Apulia, Italy) during the Late Holocene: Natural or anthropic? Quat. Sci. Rev. 2005, 24, 2137–2145. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Pleistocene sea-level changes, sapping processes and development of valley networks in the Apulia region (southern Italy). Geomorphology 2002, 46, 19–34. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Caputo, R.; Di Bucci, D.; Fracassi, U.; Iurilli, V.; Milella, M.; Pignatelli, C.; Sansò, P.; Selleri, G. Middle-Late Pleistocene evolution of the Adriatic coastline of Southern Apulia (Italy) in response to relative sea-level changes. Geogr. Fis. Din. Quat. 2011, 34, 207–221. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Antonioli, F.; Anzidei, M.; Auriemma, R.; Alfonso, C.; Scarano, T. Evidence of relative sea level rise along the coasts of central Apulia (Italy) during the late Holocene via maritime archaeological indicators. Quat. Int. 2017, 439, 65–78. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Milella, M.; Piscitelli, A.; Simone, O.; Quarta, G.; Scarano, T.; Calcagnile, L.; Spada, I. Landscape analysis in Torre Guaceto area (BRindisi) aimed at the reconstruction of the late Holocene sea level curve. Geogr. Fis. Din. Quat. 2018, 41, 65–79. [Google Scholar] [CrossRef]
- Galili, E.; Sevketoglu, M.; Salamon, A.; Zviely, D.; Mienis, H.K.; Rosen, B.; Moshkovitz, S. Late Quaternary beach deposits and archaeological relicts on the coasts of Cyprus, and the possible implications of sea-level changes and tectonics on the early populations. Geol. Soc. Lond. Spec. Publ. 2015, 411, 179–218. [Google Scholar] [CrossRef]
- Antonioli, F.; Kershaw, S.; Renda, P.; Rust, D.; Belluomini, G.; Cerasoli, M.; Radtke, U.; Silenzi, S. Elevation of the last interglacial highstand in Sicily (Italy): A benchmark of coastal tectonics. Quat. Int. 2006, 145–146, 3–18. [Google Scholar] [CrossRef]
- Basso, D.; Bernasconi, M.P.E.; Robba, E.M.S. Environmental evolution of the Marsala sound, Sicily, during the last 6000 years. J. Coast. Res. 2008, 24, 177–197. [Google Scholar] [CrossRef]
- Muhs, D.R.; Simmons, K.R.; Porat, N. Uranium-series ages of fossil corals from Mallorca, Spain: The “Neotyrrhenian” high stand of the Mediterranean Sea revisited. Palaeoclimatology 2015, 438, 408–424. [Google Scholar] [CrossRef] [Green Version]
- Benker, S.C.; Langford, R.P.; Pavlis, T.L. Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA. Geocarto Int. 2011, 26, 291–303. [Google Scholar] [CrossRef]
- Satge, F.; Denezine, M.; Pillco, R.; Timouk, F.; Pinel, S.; Molina, J.; Garnier, J.; Seyler, F.; Bonnet, M.-P. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau. ISPRS J. Photogramm. Remote Sens. 2016, 121, 157–166. [Google Scholar] [CrossRef]
- Mulu, Y.A.; Derib, S.D. Positional Accuracy Evaluation of Google Earth in Addis Ababa, Ethiopia. Artif. Satell. 2019, 54, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Ragheb, A.E.; Ragab, A.F. Enhancement of Google Earth Positional Accuracy. Int. J. Eng. Res. Technol. 2015, 4, 627–630. [Google Scholar]
- Hachani, M.A.; Ziadi, B.; Langar, H.; Sami, D.A.; Turki, S.; Aleya, L. The mapping of the Posidonia oceanica (L.) Delile barrier reef meadow in the southeastern Gulf of Tunis (Tunisia). J. Afr. Earth Sci. 2016, 121, 358–364. [Google Scholar] [CrossRef]
- Scenari di Innalzamento del Livello del Mare su Alcune Aree Costiere Italiane. Available online: http://portalesgi.isprambiente.it/it/news/news/scenari-di-innalzamento-del-livello-del-mare-su-alcune-aree-costiere-italiane (accessed on 15 April 2020).
RCP | IPCC 2013 cm | IPCC 2019 cm | Kopp et al., 2016 cm | Mengel et al., 2016 cm | Horton et al., 2014 cm | Rahmstorf 2007 cm | Bamber al., 2019 cm |
---|---|---|---|---|---|---|---|
RCP 8.5 | 53–97 | 61–110 | 52–131 | 57–131 | 50–150 | 50–140 | 21–163 |
Link | Project | Map Number |
---|---|---|
http://www.pcn.minambiente.it/mattm/ | RITMARE | 5, 6, 7, 8, 9, 10 |
http://www.sitr.regione.sicilia.it/?page_id=419 | RITMARE CLIMTOUR | 14 12 |
http://www.sardegnageoportale.it/areetematiche/modellidigitalidielevazione/ | CLIMTOUR | 1, 2, 3 |
http://centrodedescargas.cnig.es/CentroDescargas/buscador.do# | CLIMTOUR | 15, 16 |
https://land.copernicus.eu/ | CLIMTOUR | 4, 11, 13 |
https://www.geoportail.gouv.fr/carte | CLIMTOUR | 4 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site no. | Coastal Zone | DTM Resolution and Vertical Accuracy (m) | Year | SLR Projection 2100 IPCC-8.5 (2013) (mm) | SLR Projection 2050 IPCC-8.5 -2013 (mm) | SLR Projection 2100 Rahmstorf -2007 (mm) | Vertical Tectonic Rate (mm/year) | GIA (mm/year) | Total SLR -IPCC (2013) 2050 (mm) | Total SLR- IPCC 2100 (2013) (mm) | Total SLR 2100 Rahmstorf (2007) (mm) | Total SLR-IPCC SROCC 2100 (mm) | Flooded Area 2100 IPCC-8.5 (km2) | Flooded area 2100 Rahmstorf (2007) (km2) | Exposed Coastline Length (km) |
1 | Fertilia | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.57 | 249 | 1022 | 1452 | 1152.44 | 1.7 | 2.3 | 6.2 |
5 × 5 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
2 | Valledoria | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.57 | 249 | 1022 | 1452 | 1152.44 | 1 | 2.2 | 5.6 |
1 × 1 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
3 | Orosei | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.62 | 251 | 1027 | 1457 | 1157.04 | 1.6 | 3 | 7.6 |
1 × 1 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
4 | Bastia | 25 × 25 | 2010 | 970 | 225 | 1400 | 0 | 0.44 | 243 | 1010 | 1440 | 1139.6 | 21 | 25 | 29.4 |
±1 | ±134 | ±134 | ±134 | ||||||||||||
5 | Marina di campo | LiDAR | 2013 | 970 | 225 | 1400 | 0 | 0.37 | 239 | 1002 | 1432 | 1132.19 | 0.1 | 0.34 | 4.8 |
2 × 2 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
6 | Tronto | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.3 | 238 | 998 | 1428 | 1127.6 | 0.06 | 0.09 | 9.2 |
2 × 2 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
7 | Sangro | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.37 | 241 | 1004 | 1434 | 1134.04 | 0.08 | 0.13 | 7.2 |
2 × 2 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
8 | Pescara | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.385 | 241 | 1005 | 1435 | 1135.42 | 0.3 | 0.5 | 20.7 |
2 × 2 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
9 | Lesina | LiDAR | 2008 | 970 | 225 | 1400 | See Section 3.2 | 0.42 | 243 | 1009 | 1439 | 1138.64 | 13 | 13 | 40 |
2 × 2 (±0.2) (coast) | 2014 | ±134 | ±134 | ±134 | |||||||||||
1 × 1 (±0.2) (inland) | |||||||||||||||
10 | Brindisi | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.44 | 243 | 1010 | 1440 | 1140.48 | 0.5 | 0.9 | 9.9 |
2 × 2 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
11 | Larnaka Ciprus | 25 × 25 | 2010 | 970 | 225 | 1400 | 0 | 0.21 | 227 | 989 | 1419 | 1118.9 | 10.3 | 11.6 | 32.7 |
±1 | ±134 | ±134 | ±134 | ||||||||||||
12 | Granelli | LiDAR | 2007 | 970 | 225 | 1400 | 0 | 0.56 | 248 | 1022 | 1452 | 1151.52 | 5.4 | 6.8 | 14.4 |
2 × 2 (±0.2) | 2008 | ±134 | ±134 | ±134 | |||||||||||
13 | Kerkennah | SRTM 30 × 30 | 2010 | 970 | 225 | 1400 | 0 | 0.25 | 234 | 999 | 1420 | 1122.5 | 82.3 | 109 | 220.1 |
±134 | ±134 | ±134 | |||||||||||||
14 | Stagnone e saline di Marsala | LiDAR | 2008 | 970 | 225 | 1400 | 0 | 0.56 | 249 | 1022 | 1452 | 1151.52 | 5.4 | 6.9 | 18.5 |
2 × 2 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
15 | Mallorca | LiDAR | 2010 | 970 | 225 | 1400 | 0 | 0.61 | 249 | 1025 | 1455 | 1154.9 | 1.3 | 3.7 | 23.1 |
5 × 5 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
16 | Ibiza | LiDAR | 2010 | 970 | 225 | 1400 | 0 | 0.61 | 249 | 1025 | 1455 | 1154.9 | 2.9 | 4.2 | 51 |
5 × 5 (±0.2) | ±134 | ±134 | ±134 | ||||||||||||
Total | 148.5 | 192.4 | 407.8 |
A | B | C | D | E | F | G | H | I | L |
---|---|---|---|---|---|---|---|---|---|
Coastal Site | Region | Country | Latitude and Longitude (Dedimal Degree) | Exposure Direction | Max Fetch (km) | Coastal Material | Wave Energy Flux kW/m | Geomorphology | Human-Made Structures |
1 Fertilia | Sardinia | Italy | 40.617889° N 8.200782° E Gr | S | 505 | Sand | 7 | Pocket beach | Fertilia town |
2 Valledoria | Sardinia | Italy | 40.961910° 8.840432° | NW | 520 | Sand ravels | 4 | Embayed Beach | Agricultural crops |
3 Orosei | Sardinia | Italy | 40.373995° 9.725289° | SW | 574 | Sand | 1.5 | Embayed Beach | Agricultural crops |
4 Bastia | Corse | France | 42.660470° 9.448431° | W | 700 | Rock | 2 | Barrier Lagoon | Bastia Airport |
5 Marina di Campo | Island of Elba | Italy | 42.748714° 10.238112° | SW | 660 | Sand | 1,5 | Pocket beach | Marina di Campo town |
6 Tronto | Marche | Italy | 42.896730° 13.911675° | WNW | 518 | Sand | 1 | River Delta/mainland beach | Agricultural crops |
7 Sangro | Abruzzo | Italy | 42.241935° 14.517749° | NW | 423 | Sand | 1 | River Delta/mainland beach | Agricultural crops |
8 Pescara | Abruzzo | Italy | 42.467166° 14.225779° | NW | 518 | Sand | 1 | River Delta/mainland beach | Pescara town |
9 Lesina | Apulia | Italy | 41.883915° 15.452643° | N | 416 | Sand | 1.5 | Coastal lake and lagoon, tombolo | Agricultural crops |
10 Brindisi | Apulia | Italy | 40.668235° 17.948512° | NE | 688 | Rock | 1.5 | Gently sloping rocky coast | Brindisi Airport |
11 Larnaka | District of Larnaka | Cyprus | 34.947170° 33.643878° | SW | 403 | Silt | 5 | Embayed Beach | Larnaka airport |
12 Granelli | Sicily | Italy | 36.700054° 15.024145° | SSW | 770 | Sand | 3 | Barrier Lagoon | Agricultural crops |
13 Kerkennah | Governorate of Sfax | Tunisia | 34.740386° 11.221183° | E | 2167 | Rock | 2.5 | Low-lying rock platform | Tourist activities |
14 Marsala | Sicily | Italy | 37.862205° 12.442988° | W | 1605 | Sand | 5 | Barrier Lagoon | Saltponds |
15 Mallorca | Island of Mallorca | Spain | 39.530120° 2.729394° | SW | 637 | Sand | 5 | Embayed Beach | Mallorca airport |
16 Ibiza | Island of Ibiza | Spain | 38.858203° 1.370749° | S | 2730 | Sand | 3 | Embayed Beach | Saltponds |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonioli, F.; De Falco, G.; Lo Presti, V.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. https://doi.org/10.3390/w12082173
Antonioli F, De Falco G, Lo Presti V, Moretti L, Scardino G, Anzidei M, Bonaldo D, Carniel S, Leoni G, Furlani S, et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water. 2020; 12(8):2173. https://doi.org/10.3390/w12082173
Chicago/Turabian StyleAntonioli, Fabrizio, Giovanni De Falco, Valeria Lo Presti, Lorenzo Moretti, Giovanni Scardino, Marco Anzidei, Davide Bonaldo, Sandro Carniel, Gabriele Leoni, Stefano Furlani, and et al. 2020. "Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea" Water 12, no. 8: 2173. https://doi.org/10.3390/w12082173
APA StyleAntonioli, F., De Falco, G., Lo Presti, V., Moretti, L., Scardino, G., Anzidei, M., Bonaldo, D., Carniel, S., Leoni, G., Furlani, S., Marsico, A., Petitta, M., Randazzo, G., Scicchitano, G., & Mastronuzzi, G. (2020). Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water, 12(8), 2173. https://doi.org/10.3390/w12082173