Long Term Aquatic Vegetation Dynamics in Longgan Lake Using Landsat Time Series and Their Responses to Water Level Fluctuation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Aquatic Vegetation Survey Data
2.3. Satellite Data
2.4. Hydrological Data
2.5. Methods
2.5.1. Determination of Lake Boundaries
2.5.2. Aquatic Vegetation Mapping
2.5.3. Accuracy Assessment of Macrophytes Mapping
3. Results
3.1. Seasonal and Decadal Variation of Water Level
3.2. Inter-Annual Dynamics of Aquatic Vegetation
3.3. Relationship between Aquatic Vegetation Area and Water-Level Change
4. Discussion
4.1. Effects of Remote-Sensing Imagery Acquisition Time on the Maximum Aquatic Vegetation Area of a Year
4.2. Effects of Water-Level Fluctuation on Aquatic Vegetation Area
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horppila, J.; Nurminen, L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Res. 2003, 37, 4468–4474. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Ding, J. Ecological functions and resource utilization of aquatic plants. Wetl. Sci. 2011, 9, 290. [Google Scholar]
- Phiri, C.; Chakona, A.; Day, J.A. Aquatic insects associated with two morphologically different submerged macrophytes, Lagarosiphon ilicifolius and Vallisneria aethiopica, in small fishless ponds. Aquat. Ecol. 2011, 45, 405–416. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Guo, L. Doing battle with the green monster of Taihu Lake. Science 2007, 317, 1166. [Google Scholar] [CrossRef] [PubMed]
- Sand-Jensen, K.; Riis, T.; Vestergaard, O.; Larsen, S.E. Macrophyte decline in Danish lakes and streams over the past 100 years. J. Ecol. 2001, 88, 1030–1040. [Google Scholar] [CrossRef]
- Short, F.T.; Kosten, S.; Morgan, P.A.; Malone, S.; Moore, G.E. Impacts of climate change on submerged and emergent wetland plants. Aquat. Bot. 2016, 135, 3–17. [Google Scholar] [CrossRef]
- Nõges, T.; Nõges, P. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 1999, 408, 277–283. [Google Scholar] [CrossRef]
- Geest, G.V.; Wolters, H.; Roozen, F.; Coops, H.; Roijackers, R.; Buijse, A.; Scheffer, M. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 2005, 539, 239–248. [Google Scholar] [CrossRef]
- Yang, J.; Li, E.; Cai, X.; Wang, Z.; Wang, X. Research progress in response of plants in wetlands to water level change. Wetl. Sci. 2014, 12, 807–813. [Google Scholar]
- Keddy, P.; Reznicek, A. Great Lakes vegetation dynamics: The role of fluctuating water levels and buried seeds. J. Great Lakes Res. 1986, 12, 25–36. [Google Scholar] [CrossRef]
- Wilcox, D.A.; Nichols, S.J. The effects of water-level fluctuations on vegetation in a Lake Huron wetland. Wetlands 2008, 28, 487–501. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Wang, H. Effects of water level fluctuations on lakeshore vegetation of three subtropical floodplain lakes, China. Hydrobiologia 2015, 747, 43–52. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, H.; Cai, Y.; An, S. Artificial regulation of water level and its effect on aquatic macrophyte distribution in Taihu Lake. PLoS ONE 2012, 7, e44836. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, Z.; Luo, F.; Lei, G.; Li, H. Do amplitudes of water level fluctuations affect the growth and community structure of submerged macrophytes? PLoS ONE 2016, 11, e0146528. [Google Scholar] [CrossRef] [PubMed]
- Oyama, Y.; Matsushita, B.; Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM + shortwave infrared bands. Remote Sens. Environ. 2015, 157, 35–47. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Shi, K.; Zhou, Y.; Tang, X.; Zhu, G.; Qin, B. Mapping aquatic vegetation in a large, shallow eutrophic lake: A frequency-based approach using multiple years of MODIS data. Remote Sens. 2015, 7, 10295–10320. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, Y.; Ma, R.; Loiselle, S.; Li, J.; Hu, M. A MODIS-based novel method to distinguish surface cyanobacterial scums and aquatic macrophytes in Lake Taihu. Remote Sens. 2017, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Villa, P.; Pinardi, M.; Tóth, V.; Hunter, P.; Bolpagni, R.; Bresciani, M. Remote sensing of macrophyte morphological traits: Implications for the management of shallow lakes. J. Limnol. 2017, 76, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Villa, P.; Pinardi, M.; Bolpagni, R.; Gillier, J.M.; Zinke, P.; Nedelcuţ, F.; Bresciani, M. Assessing macrophyte seasonal dynamics using dense time series of medium resolution satellite data. Remote Sens. Environ. 2018, 216, 230–244. [Google Scholar] [CrossRef]
- Szabó, L.; Deák, B.; Bíró, T.; Dyke, G.J.; Szabó, S. NDVI as a Proxy for Estimating Sedimentation and Vegetation Spread in Artificial Lakes—Monitoring of Spatial and Temporal Changes by Using Satellite Images Overarching Three Decades. Remote Sens. 2020, 12, 1468. [Google Scholar] [CrossRef]
- Lopes, C.L.; Mendes, R.; Caçador, I.; Dias, J.M. Evaluation of long-term estuarine vegetation changes through Landsat imagery. Sci. Total Environ. 2019, 653, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-term dynamic of Poyang Lake surface water: A mapping work based on the google earth engine cloud platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Inman, V.L.; Lyons, M.B. Automated Inundation Mapping Over Large Areas Using Landsat Data and Google Earth Engine. Remote Sens. 2020, 12, 1348. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Huang, J.; Du, Y.; Han, P.; Wang, J.; Huang, W. Monitoring wetland vegetation pattern response to water-level change resulting from the Three Gorges Project in the two largest freshwater lakes of China. Ecol. Eng. 2015, 74, 274–285. [Google Scholar] [CrossRef]
- Liang, D.; Lu, J.; Chen, X.; Liu, C.; Lin, J. An investigation of the hydrological influence on the distribution and transition of wetland cover in a complex lake floodplain system using time-series remote sensing and hydrodynamic simulation. J. Hydrol. 2020, 587, 125038. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, J. Spatial-Temporal Dynamics of Wetland Vegetation Related to Water Level Fluctuations in Poyang Lake, China. Water 2016, 8, 397. [Google Scholar] [CrossRef] [Green Version]
- Wan, R.; Xue, D.; David, S. Vegetation Response to Hydrological Changes in Poyang Lake, China. Wetlands 2019, 39, 99–112. [Google Scholar] [CrossRef]
- You, H.; Fan, H.; Xu, L.; Wu, Y.; Wang, X.; Liu, L.; Yao, Z.; Yan, B. Effects of Water Regime on Spring Wetland Landscape Evolution in Poyang Lake between 2000 and 2010. Water 2017, 9, 467. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yuan, Y.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Hua, S.; Wu, H.; Zhu, Y.; An, H.; et al. Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation. Ecol. Eng. 2016, 90, 473–481. [Google Scholar] [CrossRef]
- Zhang, E.; Cao, Y.; Langdon, P.; Jones, R.; Yang, X.; Shen, J. Alternate trajectories in historic trophic change from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China. J. Paleolimnol. 2012, 48, 367–381. [Google Scholar] [CrossRef]
- Hu, H.; Kang, H.; Gong, G.; Zhu, M.; Zheng, W.; Wu, F.; He, D.; Li, Z.; Geng, D. Biodiversity of winter waterbirds in Hubei, China. Resour. Environ. Yangtze Basin 2005, 14, 422–428. [Google Scholar]
- Zhang, S.; Dou, H.; Jiang, J. Aquatic vegetation in Longgan Lake. J. Lake Sci. 1996, 8, 161. [Google Scholar]
- Tomaselli, V.; Di Pietro, R.; Sciandrello, S. Plant communities structure and composition in three coastal wetlands in southern Apulia (Italy). Biologia 2011, 66, 1027. [Google Scholar] [CrossRef]
- Phase 2 USGS Gap-Fill Algorithm. Available online: https://landsat.usgs.gov/sites/default/files/documents/L7SLCGapFilledMethod.pdf (accessed on 7 October 2018).
- Yuan, L.; Liu, G.; Li, W.; Li, E. Seed bank variation along a water depth gradient in a subtropical lakeshore marsh, Longgan Lake, China. Plant Ecol. 2007, 189, 127–137. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Zhao, D.; Lv, M.; Jiang, H.; Cai, Y.; Xu, D.; An, S. Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years. PLoS ONE 2013, 8, e66365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, P.; Bresciani, M.; Bolpagni, R.; Pinardi, M.; Giardino, C. A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices. Remote Sens. Environ. 2015, 171, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, X.; Wang, H. Developing water level regulation strategies for macrophytes restoration of a large river-disconnected lake, China. Ecol. Eng. 2014, 68, 25–31. [Google Scholar] [CrossRef]
- Zou, L.; Nie, Z.; Yao, X.; Shi, J. Effects of light on submerged macrophytes in eutrophic water: Research progress. Chin. J. Appl. Ecol. 2013, 24, 2073–2080. [Google Scholar]
- Yuan, S.; Zhang, X.; Liu, X.; Wang, H. Ecological water level management strategy for aquatic vegetation in the mid-lower yangtze shallow lakes. Acta Hydrobiol. Sin. 2019, 43, 104–109. [Google Scholar]
Date | Sensor | Date | Sensor |
---|---|---|---|
27/08/1987 | Landsat 5 TM | 07/08/2003 | Landsat 5 TM |
26/06/1988 | Landsat 5 TM | 24/07/2004 | Landsat 5 TM |
15/07/1989 | Landsat 5 TM | 12/08/2005 | Landsat 5 TM |
09/07/1990 | Landsat 5 TM | 30/07/2006 | Landsat 5 TM |
26/06/1991 | Landsat 5 TM | 09/08/2007 | Landsat 5 TM |
23/07/1992 | Landsat 5 TM | 03/07/2008 | Landsat 5 TM |
10/07/1993 | Landsat 5 TM | 13/07/2009 | Landsat 5 TM |
04/07/1994 | Landsat 5 TM | 25/07/2010 | Landsat 5 TM |
05/06/1995 | Landsat 5 TM | 03/07/2011 | Landsat 5 TM |
25/07/1996 | Landsat 5 TM | 22/07/2012 | Landsat 7 ETM+ |
29/08/1997 | Landsat 5 TM | 01/07/2013 | Landsat 8 OLI_TIRS |
08/07/1998 | Landsat 5 TM | 02/06/2014 | Landsat 8 OLI_TIRS |
02/07/1999 | Landsat 5 TM | 05/06/2015 | Landsat 8 OLI_TIRS |
05/07/2000 | Landsat 5 TM | 23/06/2016 | Landsat 8 OLI_TIRS |
24/07/2001 | Landsat 7 ETM+ | 28/07/2017 | Landsat 8 OLI_TIRS |
11/07/2002 | Landsat 7 ETM+ | 31/07/2018 | Landsat 8 OLI_TIRS |
02/07/2019 | Landsat 8 OLI_TIRS |
Year | Overall Accuracy (%) | Kappa | Producer’s Accuracy (%) | User’s Accuracy (%) |
---|---|---|---|---|
2017 | 79.17 | 0.5833 | 100.00 | 58.33 |
2018 | 85.42 | 0.7267 | 60.00 | 90.00 |
Year | Overall Accuracy (%) | Kappa | Producer’s Accuracy (%) | User’s Accuracy (%) |
---|---|---|---|---|
2017 | 97.12 | 0.8682 | 83.04 | 94.62 |
2018 | 97.95 | 0.8183 | 82.75 | 83.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.; Xing, J.; Yang, S.; Yu, G.; Sun, P.; Jiang, Y. Long Term Aquatic Vegetation Dynamics in Longgan Lake Using Landsat Time Series and Their Responses to Water Level Fluctuation. Water 2020, 12, 2178. https://doi.org/10.3390/w12082178
Tan W, Xing J, Yang S, Yu G, Sun P, Jiang Y. Long Term Aquatic Vegetation Dynamics in Longgan Lake Using Landsat Time Series and Their Responses to Water Level Fluctuation. Water. 2020; 12(8):2178. https://doi.org/10.3390/w12082178
Chicago/Turabian StyleTan, Wenxia, Jindi Xing, Shao Yang, Gongliang Yu, Panpan Sun, and Yan Jiang. 2020. "Long Term Aquatic Vegetation Dynamics in Longgan Lake Using Landsat Time Series and Their Responses to Water Level Fluctuation" Water 12, no. 8: 2178. https://doi.org/10.3390/w12082178
APA StyleTan, W., Xing, J., Yang, S., Yu, G., Sun, P., & Jiang, Y. (2020). Long Term Aquatic Vegetation Dynamics in Longgan Lake Using Landsat Time Series and Their Responses to Water Level Fluctuation. Water, 12(8), 2178. https://doi.org/10.3390/w12082178