Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Experimental Detail
2.2.1. Experimental Design of Nanjing Experimental Area
2.2.2. Experimental Design of Lianshui Experimental Area
2.3. Observation Contents and Test Methods
2.3.1. Meteorological and Soil Moisture Data
2.3.2. Irrigation and Drainage
2.3.3. Water Demand and Water Consumption
2.3.4. Nitrogen and Phosphorus Concentration Test
2.3.5. Grain Yield and Water Use Efficiency
2.4. Statistical Analysis
3. Results
3.1. Influence of Irrigation Mode on Drainage and Rainwater Utilization Rate
3.2. Pollutant Load of Different Irrigation Methods
3.3. Irrigation Amount, Grain Yield and Water Use Efficiency
4. Discussion
4.1. Influence of Irrigation Mode on Drainage and Rainwater Utilization Rate
4.2. Pollutant Load of N and P under Different Irrigation Methods
4.3. Productivity Parameters
4.3.1. Irrigation Water under Different Irrigation Methods
4.3.2. Grain Yield under Different Irrigation Methods
4.3.3. Water Use Efficiency under Different Irrigation Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nie, L.; Peng, S. Rice production in China. In Rice Production Worldwide; Springer: Berlin, Germany, 2017; pp. 33–52. [Google Scholar]
- Guo, J.; Hu, X.; Gao, L.; Xie, K.; Ling, N.; Shen, Q.; Hu, S.; Guo, S. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shivakoti, G.; Vermilion, D.; Lam, W.-F.; Ostrom, E.; Pradhan, U.; Yoder, R. Asian Irrigation in Transition: Responding to Challenges; SAGE Publications: New Delhi, India, 2005; p. 528. [Google Scholar]
- Wu, Y.; Wang, E.; Miao, C. Fertilizer Use in China: The Role of Agricultural Support Policies. Sustainability 2019, 11, 4391. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, Z.; Guo, X.; Lakthan, S.; Chen, S.; Xiao, Z.; Alhaj Hamoud, Y. Effects of Different Irrigation Treatments on Aquaculture Purification and Soil Desalination of Paddy Fields. Water 2019, 11, 1424. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Towa, J.J.; Xiangping, G. Effects of irrigation and weed-control methods on growth of weed and rice. Int. J. Agric. Biol. Eng. 2014, 7, 22–33. [Google Scholar]
- Peng, S.; Hou, H.; Xu, J.; Mao, Z.; Abudu, S.; Luo, Y. Nitrous oxide emissions from paddy fields under different water managements in southeast China. Paddy Water Environ. 2011, 9, 403–411. [Google Scholar] [CrossRef]
- Van der Hoek, W.; Sakthivadivel, R.; Renshaw, M.; Silver, J.; Birley, M.; Konradsen, F. Alternate Wet/Dry Irrigation in Rice Cultivation: A Practical Way to Save Water and Control Malaria and Japanese Encephalitis? Research Report; IWMI: Colombo, Sri Lanka, 2001; p. 47. [Google Scholar]
- Sato, S.; Yamaji, E.; Kuroda, T. Strategies and engineering adaptions to disseminate SRI methods in large-scale irrigation systems in Eastern Indonesia. Paddy Water Environ. 2011, 9, 79–88. [Google Scholar] [CrossRef]
- Nie, T.; Chen, P.; Zhang, Z.; Qi, Z.; Lin, Y.; Xu, D. Effects of different types of water and nitrogen fertilizer management on greenhouse gas emissions, yield, and water consumption of paddy fields in cold region of China. Int. J. Environ. Res. Public Health 2019, 16, 1639. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.P.; Zhang, Z.Y.; Yin, G.X. Effect of controlled drainage on loss of nitrogen and phosphorous from paddy field. J. Shanghai Jiaotong Univ. (Agric. Sci.) 2006, 24, 307–310. [Google Scholar]
- Li, Y.; Barker, R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ. 2004, 2, 187–193. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Huang, H.; Chen, C.; He, B.L. Effect of irrigation depths on methane emission in rice-duck complex ecosystems. J. Hunan Agric. Univ. 2006, 32, 632. [Google Scholar]
- Federation WE, American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005; p. 21. [Google Scholar]
- Rasool, G.; Guo, X.; Wang, Z.; Ali, M.U.; Chen, S.; Zhang, S.; Wu, Q.; Ullah, M.S. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agric. Water Manag. 2020, 239, 106239. [Google Scholar] [CrossRef]
- Bonaiti, G.; Borin, M. Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields. Agric. Water Manag. 2010, 98, 343–352. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W.; Liu, H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2015, 150, 67–80. [Google Scholar] [CrossRef]
- Liu, R.; Wang, F.; Zhang, A.; Youhong, L.I.; Chen, C.; Hong, Y.; Yang, Z. Types of Fertilizers and Their Application Affect the Leaching of Nitrogen and Phosphorus in Paddy Fields in Irrigation Districts of Yellow River. J. Irrig. Drain. 2017, 9, 46–49. [Google Scholar]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Kovacic, D.A.; David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage. J. Environ. Qual. 2000, 29, 1262–1274. [Google Scholar] [CrossRef] [Green Version]
- Tabbal, D.F.; Bouman, B.A.M.; Bhuiyan, S.I.; Sibayan, E.B.; Sattar, M.A. On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agric. Water Manag. 2002, 56, 93–112. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Hatano, R.; Kumar, A.; Padre, A.; Amante, M. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric. Water Manag. 2011, 98, 1417–1430. [Google Scholar] [CrossRef]
- Belder, P.; Bouman, B.A.M.; Cabangon, R.; Guoan, L.; Quilang, E.J.P.; Yuanhua, L.; Spiertz, J.H.J.; Tuong, T.P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar] [CrossRef]
- Chen, S.K.; Liu, C.W.; Huang, H.C. Analysis of water movement in paddy rice fields (II) simulation studies. J. Hydrol. 2002, 268, 259–271. [Google Scholar] [CrossRef]
- Janssen, M.; Lennartz, B. Horizontal and vertical water and solute fluxes in paddy rice fields. Soil Tillage Res. 2007, 94, 133–141. [Google Scholar] [CrossRef]
- Bouman, B.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Chen, S.K.; Liu, C.W. Analysis of water movement in paddy rice fields (I) experimental studies. J. Hydrol. 2002, 260, 206–215. [Google Scholar] [CrossRef]
- Dawe, D. Water productivity in rice-based systems in Asia–variability in space and time. Plant Prod. Sci. 2005, 8, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Cabangon, R.J.; Tuong, T.P.; Castillo, E.G.; Bao, L.X.; Lu, G.; Wang, G.; Cui, Y.; Bouman, B.A.; Li, Y.; Chen, C. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ. 2004, 2, 195–206. [Google Scholar] [CrossRef]
- Venuprasad, R.; Dalid, C.; Del Valle, M.; Zhao, D.; Espiritu, M.; Cruz, M.S.; Amante, M.; Kumar, A.; Atlin, G. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor. Appl. Genet. 2009, 120, 177–190. [Google Scholar] [CrossRef]
- Shao, G.C.; Deng, S.; Liu, N.; Yu, S.E.; Wang, M.H.; She, D.L. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Eur. J. Agron. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Stuerz, S.; Sow, A.; Muller, B.; Manneh, B.; Asch, F. Leaf area development in response to meristem temperature and irrigation system in lowland rice. Field Crop. Res. 2014, 163, 74–80. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Fischer, K.S.; Fukai, S. Physiological responses to various water saving systems in rice. Field Crop. Res. 2009, 112, 189–198. [Google Scholar] [CrossRef]
Treatments | Irrigation Control Index | Returning to Green Period | Tillering Stage | Jointing and Booting Stages | Heading and Flowering Stage | Milk Stage | Yellow Ripening Stage |
---|---|---|---|---|---|---|---|
FSI | Upper limit (mm) | 30 | 30 | 50 | 40 | 40 | 0 |
Lower limit (mm) | 10 | 10~60% * | 10 | 10 | 10 | 60~70% * | |
Rain upper limit (mm) | 40 | 100 | 100 | 100 | 80 | 0 | |
WSI | Upper limit (mm) | 30 | 20 | 20 | 30 | 30 | 0 |
Lower limit (mm) | 20 mm * | 70~90 | 90 | 100 | 80 | 70~80% | |
Rain upper limit (mm) | 40 | 60 | 100 | 100 | 80 | 0 | |
CI | Upper limit (%) | 30 mm * | 100 | 100 | 100 | 100 | 80 |
Lower limit (%) | 10 mm * | 60~70 | 70~80 | 80 | 70 | Dry naturally | |
Rain upper limit (mm) | 40 | 60 | 80 | 80 | 80 | 0 | |
RCCI | Upper limit (%) | 30 mm * | 100 | 100 | 100 | 100 | 80 |
Lower limit (%) | 10 mm * | 60~70 | 70~80 | 80 | 70 | Dry naturally | |
Rain upper limit (mm) | 80 | 150 | 200 | 200 | 200 | 0 |
Location | Treatments | Rainfall (mm) | Drainage (mm) | Rainwater Utilization Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | Avg. | 2016 | 2017 | Avg. | 2016 | 2017 | Avg. | ||
Nanjing | FSI | 1014.5 | 1004.9 | 1009.7 | 506.1 b | 189.2 b | 347.65 b | 50.1 a | 81.2 a | 65.65 a |
WSI | 1014.5 | 1004.9 | 1009.7 | 568.7 a | 287.5 a | 428.1 a | 43.9 b | 71.4 b | 57.65 b | |
CI | 1014.5 | 1004.9 | 1009.7 | 554.0 a | 283.0 a | 418.5 a | 45.4 b | 71.8 b | 58.6 b | |
RCCI | 1014.5 | 1004.9 | 1009.7 | 468.6 c | 160.9 c | 314.75 c | 53.8 a | 84.0 a | 68.9 a | |
Lianshui | FSI | 605.0 | 795.4 | 700.2 | 115.6 a | 135.5 c | 125.55 c | 80.9 c | 83.0 b | 81.95 b |
WSI | 605.0 | 795.4 | 700.2 | 96.4 b | 182.3 b | 139.35 b | 84.1 b | 77.1 c | 80.6 b | |
CI | 605.0 | 795.4 | 700.2 | 116.8 a | 195.6 a | 156.2 a | 80.7 c | 75.4 c | 78.05 b | |
RCCI | 605.0 | 795.4 | 700.2 | 15.5 c | 45.4 d | 30.45 d | 97.4 a | 94.3 a | 95.85 a |
Location | Nanjing | Lianshui | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pollutant load | Treatments | N (kg/ha) | P (kg/ha) | N (kg/ha) | P (kg/ha) | ||||||||
2016 | 2017 | Avg. | 2016 | 2017 | Avg. | 2016 | 2017 | Avg. | 2016 | 2017 | Avg. | ||
Under-ground | FSI | 13.3 b | 9.70 b | 11.5 b | 0.76 b | 0.89 a | 0.83 a | 3.76 a | 3.63 a | 3.70 a | 0.34 a | 0.28 a | 0.31 a |
WSI | 18.2 a | 17.0 a | 17.6 a | 0.97 a | 0.30 c | 0.64 b | 2.82 b | 2.29 b | 2.56 b | 0.31 b | 0.25 b | 0.28 a | |
CI | 18.0 a | 17.7 a | 17.8 a | 0.93 a | 0.83 b | 0.88 a | 2.69 b | 2.38 b | 2.54 b | 0.26 c | 0.30 a | 0.28 a | |
RCCI | 9.97 c | 9.42 b | 9.7 c | 0.56 c | 0.32 c | 0.44 c | 2.41 b | 2.70 b | 2.56 b | 0.19 d | 0.23 b | 0.21 b | |
Surface | FSI | 6.22 a | 5.56 a | 5.89 a | 0.26 a | 0.06 a | 0.16 a | 16.3 a | 18.9 a | 17.6 a | 0.84 a | 1.47 a | 1.16 a |
WSI | 5.21 b | 5.52 a | 5.37 a | 0.20 b | 0.06 a | 0.13 b | 9.94 c | 11.5 c | 10.7 c | 0.41 c | 0.30 c | 0.36 c | |
CI | 3.94 c | 4.99 a | 4.47 b | 0.15 c | 0.04 b | 0.10 c | 12.5 b | 13.7 b | 13.1 b | 0.53 b | 0.63 b | 0.58 b | |
RCCI | 5.66 b | 5.41 a | 5.54 a | 0.22 a | 0.06 a | 0.14 b | 4.31 d | 2.09 d | 3.20 c | 0.19 d | 0.14 d | 0.17 d | |
Total | FSI | 19.5 c | 15.3 b | 17.5 b | 1.02 b | 0.94 a | 0.98 a | 20.06 a | 22.5 a | 21.3 a | 1.18 a | 1.75 a | 1.47 a |
WSI | 23.4 a | 22.6 a | 23.0 a | 1.17 a | 0.36 c | 0.77 b | 12.76 c | 13.7 c | 13.2 c | 0.72 c | 0.55 c | 0.64 c | |
CI | 21.9 b | 22.7 a | 22.3 a | 1.07 b | 0.87 b | 0.97 a | 15.19 b | 16.1 b | 15.7 b | 0.79 b | 0.93 b | 0.86 b | |
RCCI | 15.6 d | 14.8 b | 15.2 c | 0.78 c | 0.38 c | 0.58 c | 6.72 d | 4.79 d | 5.76 d | 0.38 d | 0.37 d | 0.38 d |
Location | Treatments | Yield (kg/ha) | Irrigation Amount (mm) | Water Productivity (kg/m3) | |||
---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | ||
Nanjing | FSI | 12,057.3 a | 11,060.0 a | 374.9 a | 496.7 a | 3.22 c | 2.23 b |
WSI | 10,604.9 c | 10,163.9 b | 335.6 a | 394.4 b | 3.16 c | 2.58 b | |
CI | 11,233.8 bc | 10,474.5 a | 214.5 b | 290.2 c | 5.24 b | 3.61 a | |
RCCI | 11,508.5 b | 11,553.7 a | 175.7 c | 273.8 c | 6.55 a | 4.22 a | |
Lianshui | FSI | 10,760.0 b | 9694.0 ab | 639.7 a | 415.6 a | 1.68 b | 2.33 b |
WSI | 9980.0 b | 10,730.0 a | 575.0 b | 354.7 b | 1.74 b | 3.03 a | |
CI | 12,335.0 a | 8695.0 b | 596.3 b | 341.6 b | 2.07 a | 2.54 b | |
RCCI | 10,345.0 b | 9398.0 b | 594.0 b | 331.1 b | 1.74 b | 2.84 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Rasool, G.; Guo, X.; Sen, L.; Cao, K. Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency. Water 2020, 12, 2239. https://doi.org/10.3390/w12082239
Zhang S, Rasool G, Guo X, Sen L, Cao K. Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency. Water. 2020; 12(8):2239. https://doi.org/10.3390/w12082239
Chicago/Turabian StyleZhang, Shuxuan, Ghulam Rasool, Xiangping Guo, Liang Sen, and Kewen Cao. 2020. "Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency" Water 12, no. 8: 2239. https://doi.org/10.3390/w12082239
APA StyleZhang, S., Rasool, G., Guo, X., Sen, L., & Cao, K. (2020). Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency. Water, 12(8), 2239. https://doi.org/10.3390/w12082239