Determination of Volatile Fuel Oxygenates in Water by Gas Chromatography–Triple Quadrupole Mass Spectrometry: Effect of Automated Sample Preparation Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Standard Solutions Preparation
2.3. Sampling
2.4. GC–QqQ–MS/MS Analysis
2.5. Purge and Trap Equipment
2.6. Solid-Phase Microextraction Equipment
2.7. Optimization of the MS/MS Parameters
3. Results and Discussion
3.1. Selection of Precursor Ions and Product Ions
3.2. Effect of Inlet Temperature
3.3. Optimization of Purge and Trap (P&T) Preparation
3.3.1. Effect of Sample Purge Temperature
3.3.2. Effect of Desorption Time
3.4. Optimization of SPME
3.4.1. Effect of Extraction Temperature
3.4.2. Effect of Extraction Time
3.4.3. Effect of Addition of NaCl
3.5. Method Validation
3.5.1. Standard Calibration, Linearity and Sensitivity
3.5.2. Method Precision and Accuracy of Two Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Castro Sena, S.R.; de Barros Neto, E.L.; Pereira, C.G. Effect of ethyl octanoate and ethyl oleate on the properties of gasoline fuel mixture. Energy Fuels 2019, 33, 9429–9436. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Leland, A. Literature review on the effects of organometallic fuel additives in gasoline and diesel fuels. SAE Int. J. Fuels Lubr. 2018, 11, 105–124. [Google Scholar] [CrossRef]
- Nadim, F.; Zack, P.; Hoag, G.E. United States experience with gasoline additives. Energy Policy 2001, 29, 1–5. [Google Scholar] [CrossRef]
- Lindsey, B.D.; Ayotte, J.D.; Jurgens, B.C.; Desimone, L.A. Using groundwater age distributions to understand changes in methyl tert-butyl ether (MtBE) concentrations in ambient groundwater, northeastern United States. Sci. Total Environ. 2017, 579, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, S.M.; Levitt, J.P.; Ayotte, J.D. Trends in methyl tert-butyl ether concentrations in private wells in Southeast New Hampshire: 2005 to 2015. Environ. Sci. Technol. 2017, 51, 1168–1175. [Google Scholar] [CrossRef]
- Ma, J.; Xiong, D.; Li, H.; Ding, Y.; Xia, X.; Yang, Y. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert–amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study. J. Hazard. Mater. 2017, 332, 10–18. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, Q.; Wen, Q.; Yu, C.; Xie, X.; Hu, Q.; Du, Y. Effect of methyl tert-butyl ether on adipogenesis and glucose metabolism in vitro and in vivo. J. Environ. Sci. 2019, 85, 208–219. [Google Scholar] [CrossRef]
- Advisory Drinking Water. Consumer Acceptability Advice and Health Effects Analysis on Methyl Tertiary–Butyl Ether (MTBE); Office of Water, US EPA: Washington, DC, USA, 1997.
- Rosell, M.; Lacorte, S.; Ginebreda, A.; Barceló, D. Simultaneous determination of methyl tert.-butyl ether and its degradation products, other gasoline oxygenates and benzene, toluene, ethylbenzene and xylenes in Catalonian groundwater by purge-and-trap-gas chromatography–mass spectrometry. J. Chromatogr. A 2003, 995, 171–184. [Google Scholar] [CrossRef] [Green Version]
- McGregor, D. Tertiary–Butanol: A toxicological review. Crit. Rev. Toxicol. 2010, 40, 697–727. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Ibrahim, M.H.; Ismail, N.; Abdullah, A.Z. Adsorption studies of methyl tert-butyl ether from environment. Sep. Purif. Rev. 2017, 46, 273–290. [Google Scholar] [CrossRef]
- Pavón, J.L.P.; del Nogal Sánchez, M.; Laespada, M.E.F.; Cordero, B.M. Simultaneous determination of gasoline oxygenates and benzene, toluene, ethylbenzene and xylene in water samples using headspace-programmed temperature vaporization-fast gas chromatography-mass spectrometry. J. Chromatogr. A 2007, 1175, 106–111. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. National Primary Drinking Water Regulations; EPA 816-F-03-016; US EPA: Washington, DC, USA, 2003. Available online: http://www.epa.gov/safewater/contaminants (accessed on 5 August 2020).
- Cassada, D.A.; Zhang, Y.; Snow, D.D.; Spalding, R.F. Trace analysis of ethanol, MTBE, and related oxygenate compounds in water using solid–phase microextraction and gas chromatography/mass spectrometry. Anal. Chem. 2000, 72, 4654–4658. [Google Scholar] [CrossRef]
- Lee, M.R.; Chang, C.M.; Dou, J. Determination of benzene, toluene, ethylbenzene, xylenes in water at sub-ng L−1 levels by solid-phase microextraction coupled to cryo-trap gas chromatography-mass spectrometry. Chemosphere 2007, 69, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Dewsbury, P.; Thornton, S.F.; Lerner, D.N. Improved analysis of MTBE, TAME, and TBA in petroleum fuel-contaminated groundwater by SPME using deuterated internal standards with GC-MS. Environ. Sci. Technol. 2003, 37, 1392–1397. [Google Scholar] [CrossRef]
- Tanabe, A.; Tsuchida, Y.; Ibaraki, T.; Kawata, K.; Yasuhara, A.; Shibamoto, T. Investigation of methyl tert-butyl ether levels in river-, ground-, and sewage-waters analyzed using a purge-and-trap interfaced to a gas chromatograph-mass spectrometer. J. Chromatogr. A 2005, 1066, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Careri, M.; Marengo, E.; Musci, M. Use of experimental design for the purge-and-trap-gas chromatography-mass spectrometry determination of methyl tert.-butyl ether, tert.-butyl alcohol and BTEX in groundwater at trace level. J. Chromatogr. A 2002, 975, 113–121. [Google Scholar] [CrossRef]
- Mezcua, M.; Agüera, A.; Hernando, M.D.; Piedra, L.; Fernández-Alba, A.R. Determination of methyl tert.-butyl ether and tert.-butyl alcohol in seawater samples using purge-and-trap enrichment coupled to gas chromatography with atomic emission and mass spectrometric detection. J. Chromatogr. A 2003, 999, 81–90. [Google Scholar] [CrossRef]
- Zang, X.; Liang, W.; Chang, Q.; Wu, T.; Wang, C.; Wang, Z. Determination of volatile organic compounds in pen inks by a dynamic headspace needle trap device combined with gas chromatography-mass spectrometry. J. Chromatogr. A 2017, 1513, 27–34. [Google Scholar] [CrossRef]
- Zwank, L.; Schmidt, T.C.; Haderlein, S.B.; Berg, M. Simultaneous determination of fuel oxygenates and BTEX using direct aqueous injection gas chromatography mass spectrometry (DAI-GC/MS). Environ. Sci. Technol. 2002, 36, 2054–2059. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Linford, M.R. Application of microextraction techniques including SPME and MESI to the thermal degradation of polymers: A review. Crit. Rev. Anal. Chem. 2017, 47, 172–186. [Google Scholar] [CrossRef]
- Kędziora-Koch, K.; Wasiak, W. Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: Trends in application. J. Chromatogr. A 2018, 1565, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Parodi, N.; Kaziur, W.; Stojanović, N.; Jochmann, M.A.; Schmidt, T.C. Solventless microextraction techniques for water analysis. TrAC-Trend Anal. Chem. 2019, 113, 321–331. [Google Scholar] [CrossRef]
- Avino, P.; Russo, M.V. A comprehensive review of analytical methods for determining persistent organic pollutants in air, soil, water and waste. Curr. Org. Chem. 2018, 22, 939–953. [Google Scholar] [CrossRef]
- Hübschmann, H.J. Handbook of GC-MS: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Liu, Y.; Su, M.; Zhang, Y.D.; Li, W. Influence rule of organic solvents methanol from sample preparation on degradation rate and mechanism of atrazine in UV–based oxidation processes. Acta Chim. Sin. 2019, 77, 72–83. [Google Scholar] [CrossRef]
- European Commission. Commission Decision 2002/657/EC of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Result. Off. J. Eur. Commun. 2002, 221, 8–36. [Google Scholar]
- Sánchez-Avila, J.; Fernandez-Sanjuan, M.; Vicente, J.; Lacorte, S. Development of a multi-residue method for the determination of organic micropollutants in water, sediment and mussels using gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 6799–6811. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, K.; Su, M.; Zhu, H.; Lu, J.; Wang, Y.; Dong, J.; Qin, H.; Wang, Y.; Zhang, Y. Influence of solution pH on degradation of atrazine during UV and UV/H2O2 oxidation: Kinetics, mechanism, and degradation pathways. RSC Adv. 2019, 9, 35847–35861. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Liang, G.; Chen, J.; Qi, M.; Xie, P. Simultaneous determination of eight common odors in natural water body using automatic purge and trap coupled to gas chromatography with mass spectrometry. J. Chromatogr. A 2011, 1218, 3791–3798. [Google Scholar] [CrossRef]
- Yuan, B.; Li, F.; Xu, D.; Fu, M.L. Comparison of two methods for the determination of geosmin and 2-methylisoborneol in algae samples by stable isotope dilution assay through purge-and-trap or headspace solid–phase microextraction combined with GC/MS. Anal. Methods 2013, 5, 1739–1746. [Google Scholar] [CrossRef]
- Penalver, A.; Pocurull, E.; Borrull, F.; Marce, R.M. Trends in solid-phase microextraction for determining organic pollutants in environmental samples. TrAC-Trend Anal. Chem. 1999, 18, 557–568. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, J.; Li, W.; Lai, Q.; Saint, C.P.; Mulcahy, D. Determination of volatile disinfection byproducts in water by gas chromatography-triple quadrupole mass spectrometry. Anal. Lett. 2015, 48, 188–203. [Google Scholar] [CrossRef]
- Office of Pesticide Programs, US Environmental Protection Agency. Assigning Values to Non-Detected/Non-Quantified Pesticide Residues in Human Health Food Exposure Assessments; Office of Pesticide Programs, US Environmental Protection Agency: Washington, DC, USA, 2000.
- Liu, Y.; Duan, J.; Li, W. Determination of Ten Kinds of Haloacetic Acids in Water by GC-EI-MS /MS. Chin. J. Anal. Chem. 2014, 42, 77–82. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Liu, Y.; Sun, Q.; Zhao, M.; Huang, L. Determination of Volatile Fuel Oxygenates in Water by Gas Chromatography–Triple Quadrupole Mass Spectrometry: Effect of Automated Sample Preparation Techniques. Water 2020, 12, 2266. https://doi.org/10.3390/w12082266
Zhu K, Liu Y, Sun Q, Zhao M, Huang L. Determination of Volatile Fuel Oxygenates in Water by Gas Chromatography–Triple Quadrupole Mass Spectrometry: Effect of Automated Sample Preparation Techniques. Water. 2020; 12(8):2266. https://doi.org/10.3390/w12082266
Chicago/Turabian StyleZhu, Kai, Yucan Liu, Qing Sun, Min Zhao, and Lihua Huang. 2020. "Determination of Volatile Fuel Oxygenates in Water by Gas Chromatography–Triple Quadrupole Mass Spectrometry: Effect of Automated Sample Preparation Techniques" Water 12, no. 8: 2266. https://doi.org/10.3390/w12082266
APA StyleZhu, K., Liu, Y., Sun, Q., Zhao, M., & Huang, L. (2020). Determination of Volatile Fuel Oxygenates in Water by Gas Chromatography–Triple Quadrupole Mass Spectrometry: Effect of Automated Sample Preparation Techniques. Water, 12(8), 2266. https://doi.org/10.3390/w12082266