Effect of Pulse Drip Irrigation Duration on Water Distribution Uniformity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Irrigation Unit
2.2. Location of Measuring Points
2.3. Characterization of the Pipe Flow Process
2.3.1. Filling Phase
2.3.2. Stable Pressure Phase
2.3.3. Emptying Phase
2.4. Validation of the Water Distribution Model
2.5. Irrigation Performance Indicators
2.5.1. Distribution Uniformity
- Standard distribution uniformity:
- Distribution uniformity of the total water applied in the irrigation unit studied:
- Distribution uniformity of the total water applied by each emitter:
2.5.2. Potential Application Efficiency for Zero Deficit
2.6. Statistical Methods Used to Compare the Model and Data Fit
2.6.1. Coefficient of Determination
2.6.2. Theil’s Inequality Coefficient
2.6.3. Modeling Efficiency
2.6.4. Standardized Residual
3. Results
3.1. Modelling of the Filling Phase
3.2. Modelling of the Stable Pressure Phase
3.3. Modelling of the Emptying Phase
3.4. Validation of the Water Distribution Model of the Study Irrigation Unit
3.4.1. Filling Phase
3.4.2. Stable Pressure Phase
3.4.3. Emptying Phase
3.4.4. Model Performance Evaluation
3.5. Influence of the Drip Irrigation Phases on Water Applied According to the Irrigation Distribution Model
3.6. Sensitive Analyisis of Irrigation Performance Indicators Regarding the Duration of the Irrigation Pulse
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
4 MK | 4 emitters with a lower water volume measured during the three phases (filling, stable pressures and emptying) using the Merriam and Keller’s methodology |
16 MK | 16 emitters selected by the Merriam and Keller’s methodology to calculate water distribution uniformity in a drip irrigation system |
ΔTf | Time interval of pressure recorded (10 s) |
ΔPL | Pressure variation depending on lateral distance (bar) |
ΔPm | Pressure variation depending on manifold distance (bar) |
DL | Distance from lateral beginning (m) |
Dm | Distance from manifold beginning (m) |
e: | emitter. Range from 1 to 16, corresponding to 16 MK (Figure 1), during the filling and the pressure stable phases. Range from 1 to 60 during the emptying phase |
ETo | Reference evapotranspiration |
ETc | Crop water requirements |
G1 | Measuring points at the beginning of the laterals |
G2 | Measuring points at a third of the distance to the end of the laterals |
G3 | Measuring points at two third of the distance to the end of the laterals |
G4 | Measuring points at the end of the laterals |
i | Index of data pairs of observed and predicted values. 1 to 16 for emptying and stable pressure phases. 1 to 60 for irrigation pulse stage and emptying phase |
j | Time interval for measuring pressure. Range from 1 to 30. One value each 10 s during 5 min |
Kc | Crop coefficient |
L1 | Irrigation lateral located at the beginning of the manifold pipe |
L1A | Irrigation lateral at a quarter of the L1 to L2 distance |
L1B | Irrigation lateral at a half of the L1 to L2 distance |
L2 | Irrigation lateral located at a third of the distance to the end of the manifold pipe |
L3 | Irrigation lateral located at two third of the distance to the end of the manifold pipe |
L4 | Irrigation lateral located at the end of the manifold pipe |
ME | Modelling efficiency |
n | Number of measuring points. 16 for filling and stable pressure phases and 60 for emptying phase |
ne | Total number of emitters of the irrigation unit evaluated |
Obi | Observed (measured) values |
Pfej | Pressure measured in the manometer intake e at the instant j during the filling phase (meter water column) |
Average of predicted values | |
Pri | Predicted values by a model |
Pspavg measured | Average stable phase pressure measured from the validation data set (bar) |
Pspmodel | Stable phase pressure predicted by the irrigation distribution model (bar) |
Pspavg | Average pressure measured in the manometer intakes e during the stable pressure phase (metre water column) |
PAEzerodeficit | Potential application efficiency without deficit irrigation at any location |
Q25% | 25% average flow with a lower water flow (l h−1) |
Q25%-sp | 25% average flow of 16 MK emitters with a lower water flow during the stable pressure phase (l h−1) |
Qavg | Average flow (l h−1) |
Qavg-sp | Average flow of 16 MK emitters during the stable pressure phase (l h−1) |
Qfej | Flow rate of the emitter e at the instant j during the filling phase (l h−1) |
Qspe | Flow rate of the emitter e during the stable pressure phase (l h−1) |
SR | Standardized residual |
SD | Standard deviation |
Tf | Number of the first time interval measured once the pressure is stable |
Tsp | Duration of the stable pressure phase (h) |
U | Theil’s inequality coefficient |
UDlq | Distribution uniformity of the low quarter (%) |
UDlq_field_3phases | Distribution uniformity of the low quarter during filling, stable pressures and emptying phases measuring in 16 MK emitters |
UDlq_model | Distribution uniformity of the low quarter during the three irrigation phases (filling, pressure stables and emptying) calculated with the irrigation distribution model for the 15,912 drip emitters of the study unit |
UDlq_sp | Distribution uniformity of the low quarter on stable pressure phase measuring in the 16 MK emitters (%) |
V25% | 25% average water applied volume with a lower volume of water (l) |
V25%_model | 25% average of a lower volume of total water applied by the 15,9212 drip emitters of the study irrigation unit calculated with the empirical model |
V25%_field_3phases | Average of 4 MK emitters with a lower water volume measured during the three irrigation phases (filling, stable pressures and emptying) |
Vavg | Average water applied volume (l) |
Vavg_field_3phases | Average measured volume of 16 MK emitters during the three irrigation phases (filling, stable pressures and emptying) |
Vavg_model | Average of total water applied by the 15,912 drip emitters of the study irrigation unit calculated with the empirical model |
Vepavg measured | Average water volume measured during the emptying phase from validation data set (ml) |
Vepmodel | Water volume predicted by the irrigation distribution model during the emptying phase (ml) |
VETc | Volume of crop water requirements (l) |
Vfe | Water volume applied by the emitter e during the filling phase (l) |
Vfmodel | Predicted water volume applied by emitters during the filling phase using the irrigation distribution model (ml) |
Vfmeasured | Measured water volume applied by emitters during the filling phase (ml) |
VG1 | Water volume applied by emitters in position G1 (Figure 1) during the filling phase (ml) |
VG2G3G4 | Water volume applied by emitters in position G2, G3 and G4 (Figure 1) during the filling phase (ml) |
VL1-L1B | Water volume applied by emitters between the laterals L1 and L1B during the emptying phase (m) |
VL1B-L4 | Water volume applied by emitters between the laterals L1B and L4 during the emptying phase (m) |
Vspe | Water volume applied by the emitter e during the stable pressure phase (l) |
Vwater delivered | Total volume of water delivered to the field by the irrigation system |
References
- Hsiao, T.C.; Steduto, P.; Fereres, E. A quantitative framework for the systematic analysis of potential water savings in agriculture. In Book Water Saving in Mediterranean Agriculture and Future Research Needs; Options Méditerranéennes: Série B; Lamaddalena, N., Bogliotti, C., Todorovic, M., Scardigno, A., Eds.; Etudes et Recherches 56: Valenzano, Italy, 2007; Volume 1, pp. 37–47. [Google Scholar]
- Lorite, I.J.; Ruiz-Ramos, M.; Gabaldón-Leal, C.; Cruz-Blanco, M.; Porras, R.; Santos, C. Water management and climate change in semiarid environments. In Water Scarcity and Sustainable Agriculture in Semiarid Environment, 1st ed.; García-Tejero, I., Duran, V.H., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 3–40. [Google Scholar]
- Oñate, J.J.; Pereira, D.; Suarez, F. Strategic environmental assessment of the effects of European Union’s regional development plans in Donana National Park (Spain). Environ. Manag. 2003, 31, 0642–0655. [Google Scholar] [CrossRef] [PubMed]
- BOE. Apéndice 9. Dotaciones y Eficiencias. In Plan Hidrológico de la Demarcación Hidrográfica del Guadalquivir (2015–2021); Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2016; Volume 16, pp. 3686–3809. [Google Scholar]
- García Morillo, J.; Rodríguez Díaz, J.A.; Camacho, E.; Montesinos, P. Drip Irrigation Scheduling Using Hydrus 2-D Numerical Model Application for Strawberry Production in South-West Spain. Irrig. Drain. 2017, 66, 797–807. [Google Scholar] [CrossRef]
- Clark, G.A.; Smajstrla, A.G. Water distributions in soils as influenced by irrigation depths and intensities. Proc. Soil Crop Sci. Soc. Florida 1983, 42, 157–165. [Google Scholar]
- Clark, G.A.; Stanley, C.D.; Zazueta, F.S. Qualitative sensing of water movement from a point-source emitter on a sandy soil. Appl. Eng. Agric. 1993, 9, 299–303. [Google Scholar] [CrossRef]
- Dukes, M.D.; Simonne, E.H.; Davis, W.E.; Studstill, D.W.; Hochmuth, R. Effect of sensor-based high frequency irrigation on bell pepper yield and water use. In Proceedings of the 2nd International Conference on Irrigation and Drainage, Phoenix, AZ, USA, 12–15 May 2003; pp. 12–15. [Google Scholar]
- Skaggs, T.H.; Trout, T.J.; Rothfuss, Y. Drip irrigation water distribution patterns: Effects of emitter rate, pulsing, and antecedent water. Soil Sci. Soc. Am. J. 2010, 74, 1886–1896. [Google Scholar] [CrossRef] [Green Version]
- Cote, C.M.; Bristow, K.L.; Charlesworth, P.B.; Cook, F.J.; Thorburn, P.J. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrig. Sci. 2003, 22, 143–156. [Google Scholar] [CrossRef]
- Lembke, W.D.; Thorne, M.D. Nitrate leaching and irrigated corn production with organic and inorganic fertilizers on sandy soil. Trans. ASAE 1980, 23, 1153–1156. [Google Scholar] [CrossRef]
- Watts, D.G.; Martin, D.L. Effects of water and nitrogen management on nitrate leaching loss from sands. Trans. ASAE 1981, 24, 911–916. [Google Scholar] [CrossRef]
- García-Morillo, J.; Martín, M.; Camacho, E.; Rodríguez-Díaz, J.A.; Montesinos, P. Toward precision irrigation for intensive strawberry cultivation. Agric. Water Manag. 2015, 151, 43–51. [Google Scholar] [CrossRef]
- Gendron, L.; Létourneau, G.; Cormier, J.; Depardieu, C.; Boily, C.; Levallois, R.; Caron, J. Using Pulsed Water Applications and Automation Technology to Improve Irrigation Practices in Strawberry Production. HortTechnology 2018, 28, 642–650. [Google Scholar] [CrossRef]
- Létourneau, G.; Caron, J. Irrigation Management Scale and Water Application Method to Improve Yield and Water Productivity of Field-Grown Strawberries. Agronomy 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Yuan, B.Z.; Nishiyama, S. Design of microirrigation laterals at minimum cost. Irrig. Sci. 1999, 18, 125–133. [Google Scholar] [CrossRef]
- Juana, L.; Rodríguez-Sinobas, L.; Sánchez, R.; Losada, A. Analytical expressions for hydraulic calculation of trapezoidal drip irrigation units. J. Irrig. Drain. Eng. 2005, 131, 420–432. [Google Scholar] [CrossRef]
- Ella, V.B.; Reyes, M.R.; Yoder, R. Effect of hydraulic head and slope on water distribution uniformity of a low-cost drip irrigation system. Appl. Eng. Agric. 2009, 25, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Kang, Y. Evaluation of microirrigation uniformity on laterals considering field slopes. J. Irrig. Drain. Eng. 2010, 136, 429–434. [Google Scholar] [CrossRef]
- Zayani, K.; Hammami, M.; Alouini, A.; Souissi, A. Design of non-zero uniformly sloping laterals in trickle irrigation systems. J. Irrig. Drain. Eng. 2013, 139, 419–425. [Google Scholar]
- Baeza, R.; Gavilán, P.; Vargas, A.; Contreras, J.I. Influencia de la pendiente del terreno en la uniformidad de distribución de caudal en cintas de riego localizado. In Proceedings of the XXXII Congreso Nacional de Riegos, Madrid, Spain, 10–12 June 2014. [Google Scholar]
- Zapata, A.J.; López-Segura, J.G.; Alonso-López, F.; Cánovas-Fernández, G.; Baeza Cano, R.; Lozano Pérez, D.; Contreras Paris, J.I. Uniformidad de distribución en ramales de riego instalados en pendiente: Influencia del periodo de transición de vaciado. In Proceedings of the XXXV Congreso Nacional de Riegos, Tarragona, Spain, 6–8 June 2017. [Google Scholar]
- Merriam, J.L.; Keller, J. Farm Irrigation System Evaluation: A Guide to Management; Utah State University: Logan, UT, USA, 1978. [Google Scholar]
- ASAE. Design and installation of microirrigation systems. ASAE, EP405.1. In ASAE Standards 1998; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1998. [Google Scholar]
- Burt, C.M. Rapid field evaluation of drip and microspray distribution uniformity. Irrig. Drain. Syst. 2004, 18, 275–297. [Google Scholar] [CrossRef]
- Bralts, V.F.; Kesner, D. Drip irrigation field uniformity estimation. Trans. ASAE 1983, 26, 1367–1374. [Google Scholar]
- Bralts, V.F.; Edwards, D.M. Field evaluation of drip irrigation submain units. Trans. ASAE 1986, 29, 1659–1664. [Google Scholar] [CrossRef]
- Bralts, V.F.; Edwards, D.M.; Wu, I.P. Drip irrigation design and evaluation based on the statistical uniformity concept. In Book Advances in Irrigation; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1987; Volume 4, pp. 67–117. [Google Scholar]
- Kruse, E.G. Describing irrigation efficiency and uniformity. J. Irrig. Drain. Eng. Div. 1978, 104, 35–41. [Google Scholar]
- Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Solomon, K.H.; Bliesner, R.D.; Hardy, L.A.; Eisenhauer, D.E. Irrigation performance measures: Efficiency and uniformity. J. Irrig. Drain. Eng. 1997, 123, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Clemmens, A.J.; Solomon, K.H. Estimation of global irrigation distribution uniformity. J. Irrig. Drain. Eng. 1997, 123, 454–461. [Google Scholar] [CrossRef]
- Wu, I.P.; Barragán, J. Design criteria for microirrigation systems. Trans. ASAE 2000, 43, 1145–1154. [Google Scholar]
- Barragan, J.; Bralts, V.; Wu, I.P. Assessment of emission uniformity for micro-irrigation design. Biosyst. Eng. 2006, 93, 89–97. [Google Scholar] [CrossRef]
- Gavilán, P.; Estévez, J.; Berengena, J. Comparison of standardized reference evapotranspiration equations in Southern Spain. J. Irrig. Drain. Eng. 2008, 134(1), 1–12. [Google Scholar] [CrossRef]
- Lozano, D.; Ruiz, N.; Gavilán, P. Consumptive water use and irrigation performance of strawberries. Agric. Water Manag. 2016, 169, 44–51. [Google Scholar] [CrossRef]
- Tian, H.; Xu, X.; Miao, S.; Sindhoj, E.; Beltran, B.J.; Pan, Z. Modelling ecosystem responses to prescribed fires in a phosphorus-enriched Everglades wetland: I. Phosphorus dynamics and cattail recovery. Ecol. Model. 2010, 221, 1252–1266. [Google Scholar] [CrossRef]
- Vanclay, J.K.; Skovsgaard, J.P. Evaluating forest growth models. Ecol. Model. 1997, 98, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Modell. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Juana, L.; Rodríguez-Sinobas, L.; Sánchez, R.; Losada, A. Evaluation of drip irrigation: Selection of emitters and hydraulic characterization of trapezoidal units. Agric. Water Manag. 2007, 90, 13–26. [Google Scholar] [CrossRef]
- Xu, X.; Tian, H.; Pan, Z.; Thomas, C.R. Modelling ecosystem responses to prescribed fires in a phosphorus-enriched Everglades wetland: II. Phosphorus dynamics and community shift in response to hydrological and seasonal scenarios. Ecol. Model. 2011, 222, 3942–3956. [Google Scholar] [CrossRef]
- Coolong, T.; Surendran, S.; Warner, R. Evaluation of irrigation threshold and duration for tomato grown in a silt loam soil. HortTechnology 2011, 21, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Eid, A.R.; Bakry, B.A.; Taha, M.H. Effect of pulse drip irrigation and mulching systems on yield, quality traits and irrigation water use efficiency of soybean under sandy soil conditions. Agric. Sci. 2013, 5, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Segal, E.; Ben-Gal, A.; Shani, U. Root Water Uptake Efficiency under Ultra-High Irrigation Frequency. Plant Soil 2006, 282, 333–341. [Google Scholar] [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Muñoz-Carpena, R.; Icerman, J. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 23–34. [Google Scholar] [CrossRef]
- Contreras, J.I.; Alonso, F.; Cánovas, G.; Baeza, R. Determinación de la ecuación que define la curva de descarga de una cinta de riego en función del tipo de emisor y la pendiente del terreno. Acta nº 71. In Proceedings of the XIV Congreso Nacional de Ciencias Hortícolas, Orihuela, Alicante, Spain, 3–5 June 2015. [Google Scholar]
Irrigation Pulse Duration | L1-G1 | L2-G1 | L3-G1 | L4-G1 | L1-G2 | L2-G2 | L3-G2 | L4-G2 |
---|---|---|---|---|---|---|---|---|
(bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | |
5 min | 0.99 | 0.88 | 0.80 | 0.72 | 1.02 | 0.90 | 0.80 | 0.70 |
10 min | 0.93 | 0.81 | 0.72 | 0.66 | 0.95 | 0.84 | 0.70 | 0.65 |
15 min | 0.93 | 0.77 | 0.67 | 0.67 | 0.96 | 0.77 | 0.70 | 0.69 |
20 min | 0.90 | 0.70 | 0.65 | 0.66 | 0.85 | 0.72 | 0.67 | 0.67 |
Average | 0.94 | 0.79 | 0.71 | 0.68 | 0.95 | 0.81 | 0.72 | 0.68 |
SD | 0.03 | 0.07 | 0.06 | 0.02 | 0.06 | 0.07 | 0.05 | 0.02 |
L1-G3 | L2-G3 | L3-G3 | L4-G3 | L1-G4 | L2-G4 | L3-G4 | L4-G4 | |
(bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | |
5 min | 1.00 | 0.88 | 0.82 | 0.68 | 1.03 | 0.82 | 0.82 | 0.80 |
10 min | 1.02 | 0.85 | 0.70 | 0.7 | 1.07 | 0.87 | 0.73 | 0.75 |
15 min | 0.99 | 0.83 | 0.74 | 0.73 | 1.07 | 0.88 | 0.76 | 0.77 |
20 min | 0.91 | 0.76 | 0.7 | 0.71 | 0.95 | 0.82 | 0.75 | 0.77 |
Average | 0.98 | 0.83 | 0.74 | 0.71 | 1.03 | 0.85 | 0.77 | 0.77 |
SD | 0.04 | 0.04 | 0.05 | 0.02 | 0.05 | 0.03 | 0.03 | 0.02 |
Dm (m) | L1 | L1A | L1B | L2 | L3 | L4 | L1L1B | L1BL4 | L1 | L1A | L1B | L2 | L3 | L4 | L1L1B | L1BL4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average Volume (m) | Standard Deviation (ml) | |||||||||||||||
0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
7.3 | 9 | 5 | 5 | 2 | 2 | 1 | 7 | 2 | 5.59 | 4.42 | 6.02 | 2.92 | 2.05 | 0.50 | 5.00 | 2.87 |
14.7 | 6 | 0 | 11 | 4 | 5 | 4 | 3 | 6 | 1.50 | 0.00 | 8.01 | 0.00 | 0.71 | 0.50 | 0.75 | 2.30 |
22.0 | 16 | 5 | 11 | 9 | 11 | 4 | 10 | 9 | 1.64 | 0.87 | 2.87 | 2.59 | 5.72 | 3.27 | 1.25 | 3.61 |
29.3 | 29 | 25 | 26 | 14 | 19 | 20 | 27 | 20 | 0.87 | 6.12 | 5.36 | 2.38 | 0.87 | 1.09 | 3.49 | 2.42 |
32.3 | 41 | 35 | 40 | 27 | 27 | 34 | 38 | 32 | 2.49 | 3.27 | 3.96 | 6.30 | 4.66 | 4.44 | 2.88 | 4.84 |
35.2 | 53 | 51 | 51 | 36 | 44 | 38 | 52 | 42 | 2.28 | 2.86 | 2.35 | 6.70 | 2.12 | 3.39 | 2.57 | 3.64 |
38.1 | 78 | 67 | 63 | 46 | 48 | 53 | 72 | 53 | 1.80 | 5.02 | 2.45 | 8.73 | 3.27 | 7.35 | 3.41 | 5.45 |
41.1 | 92 | 86 | 80 | 61 | 66 | 73 | 89 | 70 | 1.79 | 7.12 | 5.43 | 7.95 | 7.01 | 6.16 | 4.45 | 6.64 |
44.0 | 126 | 111 | 111 | 69 | 70 | 93 | 119 | 86 | 3.46 | 11.80 | 19.73 | 5.89 | 5.39 | 5.10 | 7.63 | 9.03 |
Irrigation Pulse Duration | L1-G1 | L2-G1 | L3-G1 | L4-G1 | L1-G2 | L2-G2 | L3-G2 | L4-G2 |
---|---|---|---|---|---|---|---|---|
(bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | |
5 min | 1.00 | 0.89 | 0.80 | 0.71 | 1.00 | 0.91 | 0.80 | 0.72 |
10 min | 0.98 | 0.83 | 0.75 | 0.71 | 1.00 | 0.85 | 0.75 | 0.72 |
15 min | 0.99 | 0.83 | 0.70 | 0.65 | 1.00 | 0.84 | 0.70 | 0.68 |
20 min | 1.01 | 0.81 | 0.70 | 0.68 | 1.02 | 0.81 | 0.70 | 0.68 |
Average | 1.00 | 0.84 | 0.74 | 0.69 | 1.01 | 0.85 | 0.74 | 0.70 |
SD | 0.01 | 0.03 | 0.04 | 0.02 | 0.01 | 0.04 | 0.04 | 0.02 |
L1-G3 | L2-G3 | L3-G3 | L4-G3 | L1-G4 | L2-G4 | L3-G4 | L4-G4 | |
(bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | (bar) | |
5 min | 1.02 | 0.90 | 0.80 | 0.70 | 1.05 | 0.88 | 0.85 | 0.80 |
10 min | 1.02 | 0.88 | 0.80 | 0.70 | 1.09 | 0.88 | 0.85 | 0.89 |
15 min | 1.00 | 0.83 | 0.77 | 0.70 | 1.03 | 0.86 | 0.80 | 0.74 |
20 min | 1.04 | 0.86 | 0.74 | 0.70 | 1.08 | 0.85 | 0.80 | 0.72 |
Average | 1.02 | 0.87 | 0.78 | 0.70 | 1.06 | 0.87 | 0.83 | 0.79 |
SD | 0.01 | 0.03 | 0.02 | 0.00 | 0.02 | 0.01 | 0.03 | 0.07 |
L1 | L1A | L1B | L2 | L3 | L4 | L1L1B | L1BL4 | L1 | L1A | L1B | L2 | L3 | L4 | L1L1B | L1BL4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dm (m) | Average Volume (ml) | Standard Deviation (ml) | ||||||||||||||
0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
7.3 | 11 | 6 | 6 | 3 | 0 | 0 | 9 | 2 | 4.15 | 2.59 | 4.33 | 0.00 | 0.00 | 4.15 | 4.53 | 1.73 |
14.7 | 4 | 0 | 11 | 1 | 2 | 0 | 2 | 3 | 0.00 | 2.87 | 1.00 | 0.87 | 0.43 | 0.00 | 0.65 | 1.29 |
22.0 | 19 | 12 | 18 | 9 | 10 | 4 | 15 | 10 | 11.26 | 3.03 | 7.53 | 3.56 | 3.77 | 11.26 | 6.28 | 4.47 |
29.3 | 26 | 28 | 26 | 16 | 20 | 19 | 27 | 20 | 3.46 | 2.87 | 1.92 | 0.50 | 1.92 | 3.46 | 2.67 | 1.80 |
32.3 | 43 | 34 | 43 | 32 | 28 | 28 | 38 | 33 | 4.39 | 3.46 | 7.36 | 2.12 | 2.05 | 4.39 | 3.22 | 3.75 |
35.2 | 50 | 50 | 51 | 23 | 47 | 38 | 50 | 40 | 0.87 | 2.17 | 7.71 | 3.42 | 2.12 | 0.87 | 0.98 | 3.85 |
38.1 | 93 | 71 | 65 | 45 | 53 | 58 | 82 | 55 | 2.87 | 3.27 | 8.41 | 7.38 | 13.99 | 2.87 | 5.55 | 8.26 |
41.1 | 107 | 100 | 78 | 60 | 73 | 70 | 103 | 70 | 6.38 | 5.72 | 6.38 | 8.07 | 14.67 | 6.38 | 5.24 | 8.71 |
44.0 | 123 | 129 | 96 | 78 | 87 | 107 | 126 | 92 | 14.72 | 14.97 | 7.50 | 8.95 | 4.95 | 14.72 | 12.40 | 9.09 |
Irrigation Phases/Indices | R2 | U | ME |
---|---|---|---|
Filling phase | 0.9953 | 0.057 | 0.99 |
Stable pressure phase | 0.9658 | 0.040 | 0.92 |
Emptying phase | 0.9942 | 0.141 | 0.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, D.; Ruiz, N.; Baeza, R.; Contreras, J.I.; Gavilán, P. Effect of Pulse Drip Irrigation Duration on Water Distribution Uniformity. Water 2020, 12, 2276. https://doi.org/10.3390/w12082276
Lozano D, Ruiz N, Baeza R, Contreras JI, Gavilán P. Effect of Pulse Drip Irrigation Duration on Water Distribution Uniformity. Water. 2020; 12(8):2276. https://doi.org/10.3390/w12082276
Chicago/Turabian StyleLozano, David, Natividad Ruiz, Rafael Baeza, Juana I. Contreras, and Pedro Gavilán. 2020. "Effect of Pulse Drip Irrigation Duration on Water Distribution Uniformity" Water 12, no. 8: 2276. https://doi.org/10.3390/w12082276
APA StyleLozano, D., Ruiz, N., Baeza, R., Contreras, J. I., & Gavilán, P. (2020). Effect of Pulse Drip Irrigation Duration on Water Distribution Uniformity. Water, 12(8), 2276. https://doi.org/10.3390/w12082276