Evaluating the Impacts of Pumping on Aquifer Depletion in Arid Regions Using MODFLOW, ANFIS and ANN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Framework
2.2. Study Area
2.3. Description of Hydraulic Model (MODFLOW)
2.4. Artificial Neural Networks (ANN)
2.5. Adaptive Neuro Fuzzy Inference System
2.6. Model Performance Evaluation
3. Results and Discussion
3.1. Hydraulic Model Results
3.2. ANFIS Results
3.3. ANN Model Results
3.4. Comparison of ANN, ANFIS and Hydraulic Model Results
3.5. Long-Term Predictions
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wendt, D.E.; Loon, A.F.V.; Bloomfield, J.P.; Hannah, D.M. Asymmetric impact of groundwater use on groundwater droughts. Hydrol. Earth Syst. Sci. 2020. [Google Scholar] [CrossRef]
- Afzaal, H.; Farooque, A.A.; Abbas, F.; Acharya, B.; Esau, T. Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning. Water 2020, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Vergnes, J.; Roux, N.; Habets, F.; Ackerer, P.; Amraoui, N.; Besson, F.; Caballero, Y.; Courtois, Q.; Dreuzy, J.; Etchevers, P.; et al. The AquiFR hydrometeorological modelling platform as a tool for improving groundwater resource monitoring over France: Evaluation over a 60-year period. Hydrol. Earth Syst. Sci. 2020, 24, 633–654. [Google Scholar] [CrossRef] [Green Version]
- Al Salamah, I.S.; Ghazaw, Y.; Ghumman, A.R. Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies. Environ. Monit. Assess 2011, 173, 851–860. [Google Scholar] [CrossRef]
- Devarajan, K.; Sindhu, G. Application of Numerical and Empirical Models for Groundwater Level Forecasting. Int. J. Res. Eng. Technol. 2015, 4, 11, 127–133. [Google Scholar]
- Hariharan, V.; Shankar, M.U. A review of visual MODFLOW applications in groundwater modelling. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032025. [Google Scholar] [CrossRef] [Green Version]
- Arlai, P.; Koch, M.; Lukjan, A. Numerical investigation of sustainable groundwater yields for the Wiang Pa Pao aquifer system in northern Thailand, Songklanakarin. J. Sci. Technol. 2018, 40, 577–587. [Google Scholar]
- Bizhanimanzar, M.; Leconte, R.; Nuth, M. Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water–groundwater hydrologic models. Hydrol. Earth Syst. Sci. 2019, 23, 2245–2260. [Google Scholar] [CrossRef] [Green Version]
- Filippis, G.D.; Pouliaris, C.; Kahuda, D.; Vasile, T.A.; Manea, V.A.; Zaun, F.; Panteleit, B.; Dadaser-Celik, F.; Positano, P.; Nannucci, M.S.; et al. Spatial Data Management and Numerical Modelling: Demonstrating the Application of the QGIS-Integrated FREEWAT Platform at 13 Case Studies for Tackling Groundwater Resource Management. Water 2020, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Bizhanimanzar, M.; Leconte, R.; Nuth, M. Catchment-Scale Integrated Surface Water-Groundwater Hydrologic Modelling Using Conceptual and Physically Based Models: A Model Comparison Study. Water 2020, 12, 363. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.G.; Harbaugh, A.W. A modular three-dimensional finite-difference ground-water flow model. In Techniques of Water-Resources Investigations, Book 6; U.S. Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Jin-sheng, J.; Liu, C. Groundwater dynamic drift and response to different exploitation in the North China Plain: A case study of Luancheng County, Hebei Province. ACTA Geogr. Sin. Chin. Ed. 2002, 57, 201–209. [Google Scholar]
- Joseph, Z.; Tarhule, A. Simulating the impacts of groundwater pumping on stream–aquifer dynamics in semiarid northwestern Oklahoma, USA. Hydrogeol. J. 2008, 16, 797–810. [Google Scholar]
- Vijay, R.; Mohapatra, P.K. Hydrodynamic assessment of coastal aquifer against saltwater intrusion for city water supply of Puri, India. Environ. Earth Sci. 2016, 75, 1–8. [Google Scholar] [CrossRef]
- Sundararajan, N.; Sankaran, S. Groundwater modeling of Musi basin Hyderabad, India: A case study. Appl. Water Sci. 2020, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Lyons, R.T.; Peralta, R.C.; Majumder, P. Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima. Int. J. Environ. Res. Public Health 2020, 17, 853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavvas, M.L.; Tu, T.; Ercan, A.; Polsinelli, J. Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time. Earth Syst. Dyn. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Pujades, E.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A.; Vilarrasa, V.; Mascuñano-Salvador, E. Hydraulic characterization of diaphragm walls for cut and cover tunneling. Eng. Geol. 2012, 125, 1–10. [Google Scholar] [CrossRef]
- Pujades, E.; Jurado, A.; Carrera, J.; Vázquez-Suñé, E.; Dassargues, A. Hydrogeological assessment of non-linear underground enclosures. Eng. Geol. 2016, 207, 91–102. [Google Scholar] [CrossRef]
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am. Geophys. Union Trans. 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Pujades, E.; De Simone, S.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Settlements around pumping wells: Analysis of influential factors and a simple calculation procedure. J. Hydrol. 2017, 548, 225–236. [Google Scholar] [CrossRef]
- Cooper, H.H., Jr.; Jacob, C.E. A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans. Am. Geophys. Union 1946, 27, 526–534. [Google Scholar] [CrossRef]
- Aghlmand, R.; Abbasi, A. Application of MODFLOW with Boundary Conditions Analyses Based on Limited Available Observations: A Case Study of Birjand Plain in East Iran. Water 2019, 11, 1904. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.N.; Shen, S.L.; Chen, R.P.; Zhou, A. Three-dimensional numerical modelling on localized leakage in segmental lining of shield tunnels. Comput. Geotech. 2020, 122, 103549. [Google Scholar] [CrossRef]
- Zeng, C.F.; Xue, X.L.; Zheng, G.; Xue, T.Y.; Mei, G.X. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system. J. Hydrol. 2018, 559, 609–626. [Google Scholar] [CrossRef]
- Zeng, C.F.; Zheng, G.; Xue, X.L. Responses of deep soil layers to combined recharge in a leaky aquifer. Eng. Geol. 2019, 260, 105263. [Google Scholar] [CrossRef]
- Elbaz, K.; Shen, S.L.; Zhou, A.; Yuan, D.J.; Xu, Y.S. Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm. Appl. Sci. 2019, 9, 780. [Google Scholar] [CrossRef] [Green Version]
- Elbaz, K.; Shen, S.L.; Sun, W.J.; Yin, Z.Y.; Zhou, A. Prediction model of shield performance during tunneling via incorporating improved Particle Swarm Optimization into ANFIS. IEEE Access 2020, 8, 39659–39671. [Google Scholar] [CrossRef]
- Gao, M.U.; Zhang, N.; Shen, S.L.; Zhou, A. Real-time dynamic regulation of earth pressure for shield tunneling using GRU deep learning method. IEEE Access 2020, 8, 64310–64323. [Google Scholar] [CrossRef]
- Jeong, J.; Park, E. Comparative applications of data-driven models representing water table fluctuations. J. Hydrol. 2019, 572, 261–273. [Google Scholar] [CrossRef]
- Seifi, A.; Ehteram, M.; Singh, V.P.; Mosavi, A. 2020, Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN. Sustainability 2020, 12, 4023. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Moslemi, K.; Karami, G. Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resour. Manag. 2014, 28, 5433–5446. [Google Scholar] [CrossRef]
- Das, U.K.; Roy, P.; Ghose, D.K. Modeling water table depth using adaptive Neuro-Fuzzy Inference System. ISH J. Hydraul. Eng. 2019, 25, 291–297. [Google Scholar] [CrossRef]
- Yoon, H.; Jun, S.; Hyun, Y.; Bae, G.; Lee, K. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396, 128–138. [Google Scholar] [CrossRef]
- Chitsazan, M.; Rahmani, G.; Neyamadpour, A. Forecasting Groundwater Level by Artificial Neural Networksas an Alternative Approach to Groundwater Modeling. J. Geol. Soc. India 2015, 85, 98–106. [Google Scholar] [CrossRef]
- Supreetha, B.S.; Shenoy, N.; Nayak, P. Lion Algorithm-Optimized Long Short-Term MemoryNetwork for Groundwater Level Forecasting in Udupi District, India. Appl. Comput. Intellig. Soft Comput. 2020, 8685724. [Google Scholar] [CrossRef] [Green Version]
- Panahi, P.; Sadhasivam, N.; PourghasemI, H.R.; Rezaie, F.; Lee, S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J. Hydrol. 2020, 572, 435–448. [Google Scholar]
- Fan, Y.; Hu, L.; Wang, H.; Liu, X. Machine Learning Methods for Improved Understanding of a Pumping Test in Heterogeneous Aquifers. Water 2020, 12, 1342. [Google Scholar] [CrossRef]
- Chen, C.; He, W.; Zhou, H.; Xue, Y.; Zhu, M. A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Sci. Rep. 2020, 10, 3904. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Chen, X.; Aldahan, A.; Yi, P.; Murad, A.; Hussein, S.; Alshamsi, D.; Ahmed, M.M.; Yu, Z. Chronology and characteristics of groundwater along the United Arab Emirates-Oman arid region: A guide for regional sustainability. J. Radioanal. Nucl. Chem. 2020, 323, 1055–1070. [Google Scholar] [CrossRef]
- Djurovic, N.; Domazet, M.; Stricevic, R.; Pocuca, V.; Spalevic, V.; Pivic, R.; Gregoric, E.; Domazet, U. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS, Hindawi Publishing Corporation. Sci. World J. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Khedri, A.; Kalantari, N.; Vadiati, M. Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. Water Supply 2020, 20, 909–921. [Google Scholar] [CrossRef]
- Gonand, F. Impacts of Higher Energy Efficiency on Growth and Welfare Across Generations in Saudi Arabia; KS-1657-DP051A; King Abdul Aziz Petroleum Studies and Research Centre: Riyadh, Saudi Arabia, 2016. [Google Scholar]
- Alotaibi, K.; Ghumman, A.R.; Haider, H.; Ghazaw, Y.; Shafiquzzaman, M. Future Predictions of Rainfall and Temperature Using GCM and ANN for Arid Regions: A Case Study for the Qassim Region, Saudi Arabia. Water 2018, 10, 1260. [Google Scholar] [CrossRef] [Green Version]
- Al Salamah, I.S. To Develop a Useful Management Tool for Water Resources Allocation in the Saq Aquifer in Al-Qassim Region, Saudi Arabia. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2000. [Google Scholar]
- Alsumaiei, A.A. A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers. Water 2020, 12, 820. [Google Scholar] [CrossRef] [Green Version]
- Samarasinghe, S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition; Auerbach Publications: New York, NY, USA, 2016; ISBN 0429115784. [Google Scholar]
- Wunsch, A.; Liesch, T.; Broda, S. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J. Hydrol. 2018, 567, 743–758. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.-W.; Sethi, R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artifi. Intellig. 2012, 25, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Lohani, A.K.; Krishan, G. Groundwater Level Simulation Using Artificial Neural Network in Southeast, Punjab, India. J. Geolo. Geophy. 2015, 4, 206. [Google Scholar] [CrossRef]
- Farizawani, A.G.; Puteh, M.; Marina, Y.; Rivaie, A. A review of artificial neural network learning rule based on multiple variant of conjugate gradient approaches. J. Phys. Conf. Ser. 2020, 1529, 022040. [Google Scholar] [CrossRef]
- Ghumman, A.R.; Rauf, A.; Haider, H.; Shafiquzamman, M. Functional data analysis of models for predicting temperature and precipitation under climate change scenarios. J. Water Clim. Chang. 2019. [Google Scholar] [CrossRef]
- Abulohom, M.S.; Shah, S.M.S.; Ghumman, A.R. Development of a rainfall–runoff model, its calibration and validation. J. Water Resour. Manag. 2002, 15, 149–163. [Google Scholar] [CrossRef]
- Rauf, A.; Ghumman, A.R. Impact Assessment of Rainfall-Runoff Simulations on the Flow Duration Curve of the Upper Indus River—A Comparison of Data-Driven and Hydrologic Models. Water 2018, 10, 876. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Madan, K.J.; Kumar, A.; Panda, D.K. Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi–Surua Inter-basin of Odisha, India. J. Hydrol. 2013, 495, 38–51. [Google Scholar] [CrossRef]
Characteristics | Hydraulic Model | ANN/ANFIS | Remarks |
---|---|---|---|
Computational expenses (need high speed computers and time for computations) | High | Moderate |
|
Data and model processing requirements | Complex | Moderately complex |
|
Model Type | Physically distributed | Black-box (data driven) |
|
Model bias | Moderate to good | Good for specific data but limited in generality |
|
Long-term future predictions | Easy, once the model is calibrated | Challenging |
|
Data Name | Description | Value |
---|---|---|
Input Data | ||
Hydraulic conductivity | Estimated by pumping test and Cooper Jacob Method [4,22] | Kxx = Kyy = Kzz = 3.6 m/day |
Transmissivity | Estimated by pumping test and Cooper Jacob Method [4,22] | 4500 m2/day |
No of aquifer layers | Estimated by previous studies [4] | 5 (631, 125, 125, 125, and 125 m) |
Mesh size | Adopted from previous studies [4] | 30 km × 20 km area divided into 80 rows × 70 columns |
Pumping rates | From Ministry of Environment, Agriculture and Water, Saudi Arabia | For 55 pumping/observational wells (1980 to 2018) |
Water levels (a) | From Ministry of Environment, Agriculture and Water, Saudi Arabia | For 55 pumping/observational wells (1980 to 2018) |
Initial conditions | Adopted from previous studies [4] | Water levels at the start time of simulations |
Boundary conditions | Calibrated assuming general head boundary conditions | Challenging task |
Output | ||
Water levels (b) | Predicted by the model | For 55 pumping/observational wells (1980 to 2018) for calibration and validation |
Water levels (c) | Predicted by the model | For 55 pumping/observational wells (1918 to 2070) future predictions |
Parameter Name | Description | Value/Comment |
---|---|---|
Input Data | ||
Number of hidden layers | Adopted to investigate the best architecture of the model | Two to three |
Number hidden neurons in each layer | Adopted to investigate the best architecture of the model | 5 to 15 (5, 10, 15) |
Activation functions | Tested various functions | - |
Training algorithms | Tested various training algorithms | - |
Data base division for training, testing and cross validation | Tested various divisions | - |
Pumping rates | From Ministry of Environment, Agriculture and Water, Saudi Arabia | For selected pumping/observational wells (1980 to 2018) |
Water levels (a) | From Ministry of Environment, Agriculture and Water, Saudi Arabia | For selected pumping/observational wells (1980 to 2018) |
Output | ||
Water levels (b) | Predicted by the model | For selected pumping/observational wells (1980 to 2018) for training/testing/validation |
Water levels (c) | Predicted by the model | For 55 pumping/observational wells (1918 to 2070) future predictions |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuhaylan, M.R.; Ghumman, A.R.; Al-Salamah, I.S.; Ahmad, A.; Ghazaw, Y.M.; Haider, H.; Shafiquzzaman, M. Evaluating the Impacts of Pumping on Aquifer Depletion in Arid Regions Using MODFLOW, ANFIS and ANN. Water 2020, 12, 2297. https://doi.org/10.3390/w12082297
Almuhaylan MR, Ghumman AR, Al-Salamah IS, Ahmad A, Ghazaw YM, Haider H, Shafiquzzaman M. Evaluating the Impacts of Pumping on Aquifer Depletion in Arid Regions Using MODFLOW, ANFIS and ANN. Water. 2020; 12(8):2297. https://doi.org/10.3390/w12082297
Chicago/Turabian StyleAlmuhaylan, Mohammed R., Abdul Razzaq Ghumman, Ibrahim Saleh Al-Salamah, Afaq Ahmad, Yousry M. Ghazaw, Husnain Haider, and Md. Shafiquzzaman. 2020. "Evaluating the Impacts of Pumping on Aquifer Depletion in Arid Regions Using MODFLOW, ANFIS and ANN" Water 12, no. 8: 2297. https://doi.org/10.3390/w12082297
APA StyleAlmuhaylan, M. R., Ghumman, A. R., Al-Salamah, I. S., Ahmad, A., Ghazaw, Y. M., Haider, H., & Shafiquzzaman, M. (2020). Evaluating the Impacts of Pumping on Aquifer Depletion in Arid Regions Using MODFLOW, ANFIS and ANN. Water, 12(8), 2297. https://doi.org/10.3390/w12082297