The Relationship between Soil Moisture and Soil Water Repellency Persistence in Hydrophobic Soils
Abstract
:1. Introduction
- (i)
- Model actual SWR persistence as a function of and the potential SWR in drying hydrophobic soils;
- (ii)
- Examine the implication of soil particle size distribution and SA in controlling the potential SWR through a combination of published datasets from New Zealand case studies.
2. Theory
3. Materials and Methods
4. Results and Discussions
4.1. The Actual SWR () as Function Soil Moisture
4.2. Soil Properties Controlling the Potential SWR ()
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dekker, L.W.; Oostindie, K.; Ritsema, C.J. Exponential increase of publications related to soil water repellency. Aust. J. Soil Res. 2005, 43, 403–441. [Google Scholar] [CrossRef]
- Bisdom, E.B.A.; Dekker, L.W.; Schoute, J.F.T. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 1993, 56, 105–118. [Google Scholar] [CrossRef]
- Stefan, D. The role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal. J. Hydrol. 2000, 231, 134. [Google Scholar]
- Tschapek, M. Criteria for Determining the hydrophilicity-hydrophobicity of Soils. Z. Für Pflanz. Bodenkd. 1984, 147, 137–149. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Kaiser, M.; Kleber, M.; Berhe, A.A. How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference. Soil Biol. Biochem. 2015, 80, 324–340. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour. Res. 1994, 30, 2507–2517. [Google Scholar] [CrossRef]
- Kawamoto, K.; Moldrup, P.; Komatsu, T.; de Jonge, L.W.; Oda, M. Water Repellency of Aggregate Size Fractions of a Volcanic Ash Soil. Soil Sci. Soc. Am. J. 2007, 71, 1658–1666. [Google Scholar] [CrossRef]
- Leighton-Boyce, G.; Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Quantifying the impact of soil water repellency on overland flow generation and erosion: A new approach using rainfall simulation and wetting agent on in situ soil. Hydrol. Process. 2007, 21, 2337–2345. [Google Scholar] [CrossRef]
- Jeyakumar, P.; Müller, K.; Deurer, M.; van den Dijssel, C.; Mason, K.; Le Mire, G.; Clothier, B. A novel approach to quantify the impact of soil water repellency on run-off and solute loss. Geoderma 2014, 221–222, 121–130. [Google Scholar] [CrossRef]
- de Jonge, L.W.; Moldrup, P.; Schjønning, P. Soil Infrastructure, Interfaces & Translocation Processes in Inner Space (“Soil-it-is”): Towards a road map for the constraints and crossroads of soil architecture and biophysical processes. Hydrol. Earth Syst. Sci. 2009, 13, 1485–1502. [Google Scholar] [CrossRef] [Green Version]
- Letey, J.; Osborn, J.; Pelishek, R.E. Measurement of liquid-solid contact angles in soil and sand. Soil Sci. 1962, 93, 149–153. [Google Scholar] [CrossRef]
- Carrillo, M.L.K.; Yates, S.R.; Letey, J. Measurement of Initial Soil-Water Contact Angle of Water Repellent Soils. Soil Sci. Soc. Am. J. 1999, 63, 433–436. [Google Scholar] [CrossRef]
- Bachmann, J.; Ellies, A.; Hartge, K.H. Chapter 6—Sessile drop contact angle method. In Soil Water Repellency; Elsevier: Amsterdam, The Netherlands, 2003; pp. 57–65. ISBN 978-0-444-51269-7. [Google Scholar]
- Chau, H.W.; Goh, Y.K.; Si, B.C.; Vujanovic, V. Assessment of alcohol percentage test for fungal surface hydrophobicity measurement. Lett. Appl. Microbiol. 2010, 50, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Letey, J.; Carrillo, M.L.K.; Pang, X.P. Chapter 5—Characterizing the degree of repellency. In Soil Water Repellency; Elsevier: Amsterdam, The Netherlands, 2003; pp. 51–55. ISBN 978-0-444-51269-7. [Google Scholar]
- Chau, H.W. Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repellent soils. Geoderma 2014, 221, 113–120. [Google Scholar] [CrossRef]
- Hermansen, C.; Moldrup, P.; Müller, K.; Jensen, P.W.; van den Dijssel, C.; Jeyakumar, P.; de Jonge, L.W. Organic carbon content controls the severity of water repellency and the critical moisture level across New Zealand pasture soils. Geoderma 2019, 338, 281–290. [Google Scholar] [CrossRef]
- Wijewardana, N.S.; Müller, K.; Moldrup, P.; Clothier, B.; Komatsu, T.; Hiradate, S.; de Jonge, L.W.; Kawamoto, K. Soil-water repellency characteristic curves for soil profiles with organic carbon gradients. Geoderma 2016, 264, 150–159. [Google Scholar] [CrossRef]
- Karunarathna, A.K.; Moldrup, P.; Kawamoto, K.; de Jonge, L.W.; Komatsu, T. Two-Region Model for Soil Water Repellency as a Function of Matric Potential and Water Content. Vadose Zone J. 2010, 9, 719–730. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Cao, Z.; Si, B. Soil water repellency characteristic curve influenced by drying and wetting processes. Can. J. Soil Sci. 2016, 97, 226–240. [Google Scholar]
- Franco, C.M.M.; Clarke, P.J.; Tate, M.E.; Oades, J.M. Chapter 4—Chemical characterisation of water repellent materials in Australian sands. In Soil Water Repellency; Elsevier: Amsterdam, The Netherlands, 2003; pp. 37–48. ISBN 978-0-444-51269-7. [Google Scholar]
- Ritsema, C.J.; Dekker, L.W. How water moves in a water repellent sandy soil: 2. Dynamics of fingered flow. Water Resour. Res. 1994, 30, 2519–2531. [Google Scholar] [CrossRef]
- Müller, K.; Deurer, M.; Jeyakumar, P.; Mason, K.; van den Dijssel, C.; Green, S.; Clothier, B. Temporal dynamics of soil water repellency and its impact on pasture productivity. Agric. Water Manag. 2014, 143, 82–92. [Google Scholar] [CrossRef]
- King, P.M. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Soil Res. 1981, 19, 275–285. [Google Scholar] [CrossRef]
- Deurer, M.; Müller, K.; Van Den Dijssel, C.; Mason, K.; Carter, J.; Clothier, B.E. Is soil water repellency a function of soil order and proneness to drought? A survey of soils under pasture in the North Island of New Zealand. Eur. J. Soil Sci. 2011, 62, 765–779. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J.; Oostindie, K.; Boersma, O.H. Effect of drying temperature on the severity of soil water repellency. Soil Sci. 1998, 163, 780–796. [Google Scholar] [CrossRef]
- Regalado, C.M.; Ritter, A. Geostatistical Tools for Characterizing the Spatial Variability of Soil Water Repellency Parameters in a Laurel Forest Watershed. Soil Sci. Soc. Am. J. 2006, 70, 1071–1081. [Google Scholar] [CrossRef]
- Mcghie, D.A.; Posner, A.M. Water repellence of a heavy textured Western Australian surface soil. Soil Res. 1980, 18, 309–323. [Google Scholar] [CrossRef]
- Wallis, M.G.; Scotter, D.R.; Horne, D.J. An evaluation of the intrinsic sorptivity water repellency index on a range of New Zealand soils. Soil Res. 1991, 29, 353–362. [Google Scholar] [CrossRef]
- Wallis, M.G.; Horne, D.J. Soil Water Repellency. In Advances in Soil Science; Springer: New York, NY, USA, 1992; pp. 91–146. ISBN 978-1-4612-7724-8. [Google Scholar]
- DeBano, L.F.; Mann, L.D.; Hamilton, D.A. Translocation of Hydrophobic Substances into Soil by Burning Organic Litter. Soil Sci. Soc. Am. J. 1970, 34, 130–133. [Google Scholar] [CrossRef]
- Hewitt, A.E. New Zealand soil classification. Landcare Res. Sci. Ser. 2010, 136. [Google Scholar]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Field Book for Describing and Sampling Soils; Government Printing Office: Washington, DC, USA, 2012; ISBN 0-16-091542-2. [Google Scholar]
- Doerr, S.H. On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Process. Landf. 1998, 23, 663–668. [Google Scholar] [CrossRef]
- Simpson, R.M.; Mason, K.; Robertson, K.; Müller, K. Relationship between soil properties and enzyme activities with soil water repellency. Soil Res. 2019, 57, 689–702. [Google Scholar] [CrossRef]
- Whitley, A.E. Investigations of Soil Extractable Aluminium and Toxicity in New Zealand Soils. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2018. [Google Scholar]
- Hillel, D. Fundamentals of Soil Physics; Academic Press: Cambridge, MA, USA, 2013; ISBN 0-08-091870-0. [Google Scholar]
- Dekker, L.W.; Doerr, S.H.; Oostindie, K.; Ziogas, A.K.; Ritsema, C.J. Water Repellency and Critical Soil Water Content in a Dune Sand. Soil Sci. Soc. Am. J. 2001, 65, 1667–1674. [Google Scholar] [CrossRef]
- Michel, J.-C. Influence of Clay Addition on Physical Properties and Wettability of Peat-growing Media. HortScience 2009, 44, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Stoof, C.R.; Moore, D.; Ritsema, C.J.; Dekker, L.W. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Sci. Soc. Am. J. 2011, 75, 2283–2295. [Google Scholar] [CrossRef]
- Horne, D.J.; McIntosh, J.C. Chapter 3—Hydrophobic compounds in sands from New Zealand. In Soil Water Repellency; Elsevier: Amsterdam, The Netherlands, 2003; pp. 25–35. ISBN 978-0-444-51269-7. [Google Scholar]
- Mao, J.; Nierop, K.G.J.; Sinninghe Damsté, J.S.; Dekker, S.C. Roots induce stronger soil water repellency than leaf waxes. Geoderma 2014, 232, 328–340. [Google Scholar] [CrossRef]
- Müller, K.; Deurer, M. Review of the remediation strategies for soil water repellency. Agric. Ecosyst. Environ. 2011, 144, 208–221. [Google Scholar] [CrossRef]
- Koptsik, S.; Strand, L.; Clarke, N. On the calculation of the surface area of different soil size fractions. Appl. Geochem. 2003, 18, 629–651. [Google Scholar] [CrossRef]
Sample | NZ Classification | WDPT s | Texture | C % | Log s | g g−1 | RMSE Log s | |
---|---|---|---|---|---|---|---|---|
1 | Pallic Orthic Brown | 3900 | Clay loam | 12.89 | 3.68 | 0.35 | 18.69 | 0.18 |
2 | Typic Orthic Pumice | 3660 | Sand | 4.93 | 3.56 | 0.13 | 49.06 | 0.01 |
3 | Typic Immature Pallic | 168 | Loamy Silt | 3.6 | 2.23 | 0.13 | 57.28 | 0.00 |
4 | Typic Orthic Pumice | 8460 | Sand | 4.6 | 4.2 | 0.19 | 14.93 | 0.24 |
5 | Mottled Argillic Pallic | 782 | Silt loam | 8.65 | 2.78 | 0.26 | 33.46 | 0.11 |
6 | Pallic Orthic Brown | 604 | Silt loam | 6.69 | 2.78 | 0.17 | 48.84 | 0.13 |
7 | Mottled Argillic Pallic | 286 | Light silt loam | 7.4 | 2.42 | 0.29 | 27.75 | 0.24 |
8 | Pallic Orthic Brown | 604 | Silt loam | 6.69 | 2.78 | 0.21 | 37.32 | 0.22 |
9 | Mottled Argillic Pallic | 38 | Light silt loam | 4.92 | 1.57 | 0.16 | 33.29 | 0.14 |
10 | Mottled Argillic Pallic | 1800 | Light silt loam | 5.86 | 3.25 | 0.17 | 34.65 | 0.03 |
C | ||||
---|---|---|---|---|
C | 1 | 0.06 | 0.82 | 0.24 |
1 | 0.04 | 0.19 | ||
1 | 0.45 | |||
1 |
Soil Order (NZ) | n | pH | Silt g g−1 | Sand g g−1 | Clay g g−1 | SA m2 g−1 | C % | MED % | Log WDPT Log s | Study |
---|---|---|---|---|---|---|---|---|---|---|
Recent | 1 | 5.3 | 0.36 | 0.55 | 0.09 | 1.84 | 2.49 | 0.00 | 0.00 | This study: Sampled by Whitley et al. [37] |
Brown | 1 | 5.2 | 0.39 | 0.34 | 0.28 | 5.31 | 12.89 | 13.00 | 3.73 | |
Pumice | 1 | 5.2 | 0.14 | 0.86 | 0.01 | 0.16 | 4.93 | 24.00 | 3.77 | |
Pallic | 1 | 5.6 | 0.32 | 0.62 | 0.06 | 1.17 | 2.74 | 0.00 | 0.00 | |
Brown | 1 | 5 | 0.39 | 0.48 | 0.13 | 2.52 | 6.18 | 5.00 | 1.54 | |
Pallic | 1 | 5.2 | 0.47 | 0.5 | 0.03 | 0.74 | 3.6 | 13.00 | 2.84 | |
Brown | 1 | 4.7 | 0.32 | 0.51 | 0.17 | 3.27 | 4.91 | 6.75 | 1.87 | |
Pumice | 1 | 5.1 | 0.14 | 0.85 | 0.01 | 0.18 | 6.7 | 24.00 | 3.89 | |
Brown | 21 | 5.3 | 0.58 | 0.34 | 0.08 | 1.66 | 6.3 | 7.50 | − * | Hermansen et al. [18] |
Pallic | 12 | 5.5 | 0.73 | 0.21 | 0.06 | 1.30 | 3.8 | 3.00 | − | |
Podzol | 12 | 5.4 | 0.62 | 0.29 | 0.09 | 1.89 | 9.5 | 27.00 | − | |
Recent | 18 | 5.2 | 0.67 | 0.25 | 0.08 | 1.66 | 4.2 | 9.00 | − | |
Semiarid | 9 | 5.6 | 0.48 | 0.40 | 0.13 | 2.52 | 4.1 | 1.50 | − | |
Pallic | 12 | 4.5 | 0.22 | 0.49 | 0.27 | 5.61 | 11.6 | 2.00 | 3.07 | Müller et al. [24] |
Ultic | 9 | 4.9 | 0.41 | 0.25 | 0.34 | 6.53 | 8.1 | 3.00 | 3.95 | |
Recent | 6 | 4.5 | 0.64 | 0.32 | 0.04 | 0.96 | 9.06 | 11.50 | 3.65 | Simpson et al. [36] |
Brown | 6 | 4.7 | 0.49 | 0.49 | 0.02 | 0.56 | 8.69 | 10.00 | 3.71 |
pH | Silt | Sand | Clay | SA | C | MED | Log WDPT | |
---|---|---|---|---|---|---|---|---|
pH | 1 | 0.2 | −0.03 | −0.29 | −0.29 | −0.54 * | −0.01 | −0.49 |
Silt | 1 | −0.85 *** | −0.15 | −0.13 | −0.06 | −0.15 | 0.01 | |
Sand | 1 | −0.4 | −0.42 | −0.23 | 0.34 | −0.09 | ||
Clay | 1 | 1 *** | 0.53 * | −0.38 | 0.13 | |||
SA | 1 | 0.53 * | −0.39 | 0.13 | ||||
C | 1 | 0.29 | 0.66 * | |||||
MED | 1 | 0.65 * | ||||||
Log WDPT | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayad, M.; Chau, H.W.; Trolove, S.; Moir, J.; Condron, L.; Bouray, M. The Relationship between Soil Moisture and Soil Water Repellency Persistence in Hydrophobic Soils. Water 2020, 12, 2322. https://doi.org/10.3390/w12092322
Bayad M, Chau HW, Trolove S, Moir J, Condron L, Bouray M. The Relationship between Soil Moisture and Soil Water Repellency Persistence in Hydrophobic Soils. Water. 2020; 12(9):2322. https://doi.org/10.3390/w12092322
Chicago/Turabian StyleBayad, Mohamed, Henry Wai Chau, Stephen Trolove, Jim Moir, Leo Condron, and Moussa Bouray. 2020. "The Relationship between Soil Moisture and Soil Water Repellency Persistence in Hydrophobic Soils" Water 12, no. 9: 2322. https://doi.org/10.3390/w12092322
APA StyleBayad, M., Chau, H. W., Trolove, S., Moir, J., Condron, L., & Bouray, M. (2020). The Relationship between Soil Moisture and Soil Water Repellency Persistence in Hydrophobic Soils. Water, 12(9), 2322. https://doi.org/10.3390/w12092322