Spatiotemporal Dynamics of Dissolved Organic Carbon and Freshwater Browning in the Zoige Alpine Wetland, Northeastern Qinghai-Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sample Collection
2.3. DOC and CDOM Absorption Determination
2.4. Fluorescence Determination
3. Results and Discussion
3.1. DOC Concentration
3.1.1. Spatial Variation
3.1.2. Seasonal Variation
3.2. CDOM Absorption
3.2.1. CDOM and CDOM/DOC
3.2.2. SUVA254 and SR
3.2.3. Spatial Fluctuations Along Rivers
3.3. Correlations Between DOC and CDOM
3.4. Correlations Among DOC and Light Absorption Characteristics
3.5. DOC Classification
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roulet, N.; Moore, T.R. Environmental chemistry: Browning the waters. Nature 2006, 444, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.D.; Jones, T.G.; Burden, A.; Ostle, N.; Zieliński, P.; Cooper, M.D.A.; Peacock, M.; Clark, J.M.; Oulehle, F.; Cooper, D.; et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 2012, 18, 3317–3331. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.D.; Monteith, D.T.; Cooper, D.M. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 2005, 137, 55–71. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Fork, M.L.; Heffernan, J.B. Direct and Indirect Effects of Dissolved Organic Matter Source and Concentration on Denitrification in Northern Florida Rivers. Ecosystems 2014, 17, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.I. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 1992, 229, 73–91. [Google Scholar] [CrossRef]
- Liang, L.; Singer, P.C. Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environ. Sci. Technol. 2003, 37, 2920–2928. [Google Scholar] [CrossRef]
- Solomon, C.T.; Jones, S.E.; Weidel, B.C.; Buffam, I.; Fork, M.L.; Karlsson, J.; Larsen, S.; Lennon, J.T.; Read, J.S.; Sadro, S.; et al. Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges. Ecosystems 2015, 18, 376–389. [Google Scholar] [CrossRef]
- Monteith, D.T.; Stoddard, J.L.; Evans, C.D.; de Wit, H.A.; Forsius, M.; Høgåsen, T.; Wilander, A.; Skjelkvåle, B.L.; Jeffries, D.S.; Vuorenmaa, J.; et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 2007, 450, 537–540. [Google Scholar] [CrossRef]
- SanClements, M.D.; Oelsner, G.P.; McKnight, D.M.; Stoddard, J.L.; Nelson, S.J. New Insights into the Source of Decadal Increases of Dissolved Organic Matter in Acid-Sensitive Lakes of the Northeastern United States. Environ. Sci. Technol. 2012, 46, 3212–3219. [Google Scholar] [CrossRef]
- Fenner, N.; Freeman, C.; Hughes, S.; Reynolds, B. Molecular weight spectra of dissolved organic carbon in a rewetted Welsh peatland and possible implications for water quality. Soil Use. Manag. 2001, 17, 106–112. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.; Butler, K.; Aiken, G. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J. Geophys. Res. Biogeosci. 2012, 117, 3001. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, J.; Mu, G.; Ju, H.; Rui, W.; Li, D. Spatiotemporal Characterization of Chromophoric Dissolved Organic Matter (CDOM) and CDOM-DOC Relationships for Highly-Polluted River. Water 2016, 8, 399. [Google Scholar] [CrossRef]
- Loiselle, S.; Vione, D.; Minero, C.; Maurino, V.; Tognazzi, A.; Dattilo, A.; Rossi, C.; Bracchini, L. Chemical and optical phototransformation of dissolved organic matter. Water Res. 2012, 46, 3197–3207. [Google Scholar] [CrossRef]
- Fasching, C.; Behounek, B.; Singer, G.A.; Battin, T.J. Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Sci. Rep. 2014, 4, 4981. [Google Scholar] [CrossRef]
- Massicotte, P.; Frenette, J.-J. Spatial connectivity in a large river system: Resolving the sources and fate of dissolved organic matter. Ecol. Appl. 2011, 21, 2600–2617. [Google Scholar] [CrossRef]
- Stanley, E.; Powers, S.; Lottig, N.; Buffam, I.; Crawford, J. Contemporary Changes in Dissolved Organic Carbon (DOC) in Human-Dominated Rivers: Is There a Role for DOC Management? Freshwater Biol. 2011, 57, 26–42. [Google Scholar] [CrossRef]
- Freeman, C.; Evans, C.D.; Monteith, D.T.; Reynolds, B.; Fenner, N. Export of organic carbon from peat soils. Nature 2001, 412, 785. [Google Scholar] [CrossRef]
- Ritson, J.; Brazier, R.; Graham, N.; Freeman, C.; Templeton, M.; Clark, J. The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources. Biogeosciences 2017, 14, 2891–2902. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yang, G.; Peng, C.; Zhang, Y.; Zhu, D.; Zhu, Q.; Hu, J.; Wang, M.; Zhan, W.; Zhu, E.; et al. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quaternary Sci. Rev. 2014, 95, 151–158. [Google Scholar] [CrossRef]
- Hu, G.; Dong, Z.; Lu, J.; Yan, C. Driving forces of land use and land cover change (LUCC) in the Zoige Wetland, Qinghai-Tibetan Plateau. Cold Arid Reg. 2012, 4, 422–430. [Google Scholar]
- Xiang, S.; Guo, R.; Wu, N.; Sun, S. Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau. Ecol. Eng. 2009, 35, 553–562. [Google Scholar] [CrossRef]
- Huo, L.; Chen, Z.; Zou, Y.; Lu, X.; Guo, J.; Tang, X. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecol. Eng. 2013, 51, 287–295. [Google Scholar] [CrossRef]
- Lou, X.D.; Zhai, S.Q.; Kang, B.; Hu, L.L. Seasonal dynamic characteristics of dissolved organic carbon in Zoige peatland and its impact factors. Res. Environ. Sci. (China) 2014, 27, 157–163. [Google Scholar]
- Yang, G.; Wang, M.; Chen, H.; Liu, L.; Wu, N.; Zhu, D.; Tian, J.; Peng, C.; Zhu, Q.; He, Y. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands. Atmos. Environ. 2016, 152, 323–329. [Google Scholar] [CrossRef]
- Zhang, X.W.; Mo, Y.; Zhang, B.Y.; Gao, J.J.; Gao, J.Q. Effect of wetting-drying cycle and litter on dissolved organic carbon in peat soil in Zoigê Plateau. Wetland Sci. (China) 2014, 12, 134–140. [Google Scholar]
- Zhu, D.; Chen, H.; Zhu, Q.a.; Wu, Y.; Wu, N. High Carbon Dioxide Evasion from an Alpine Peatland Lake: The Central Role of Terrestrial Dissolved Organic Carbon Input. Water Air. Soil Poll. 2012, 223, 2563–2569. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Wang, Y. Changes in alpine wetland ecosystems of the Qinghai–Tibetan plateau from 1967 to 2004. Environ. Monit. Assess 2011, 180, 189–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurl, O. Practical Guidelines for the Analysis of Seawater; CRC Press: Boca Raton, FL, USA, 2009; pp. 81–83. [Google Scholar]
- Liu, Y.-Y.; Qin, J.-H.; Liu, C.; Sun, H.; Tang, X.-Y.; Fan, S.-Y. Characteristics of Chromophoric Dissolved Organic Matter (CDOM) in Rivers of Western Sichuan Plateau Based on EEM-PARAFAC Analysis. Environ. Sci. (China) 2018, 39, 720–728. [Google Scholar]
- Gonnelli, M.; Vestri, S.; Santinelli, C. Chromophoric dissolved organic matter and microbial enzymatic activity. A biophysical approach to understand the marine carbon cycle. Biophys. Chem. 2013, 182, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wang, D.; Wei, S.; Yan, J.; Liang, J.; Chen, X.; Liu, J.; Wang, Q.; Lu, S.; Gao, J.; et al. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China. Sci. Total Environ. 2018, 636, 249–259. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Ohno, T. Fluorescence Inner-Filtering Correction for Determining the Humification Index of Dissolved Organic Matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef]
- Alvarez-Cobelas, M.; Angeler, D.; Sánchez-Carrillo, S.; Almendros, G. A worldwide view of organic carbon export from catchments. Biogeochemistry 2012, 107, 275–293. [Google Scholar] [CrossRef]
- Jiang, R.; Hatano, R.; Zhao, Y.; Kuramochi, K.; Hayakawa, A.; Woli, K.; Shimizu, M. Factors controlling nitrogen and dissolved organic carbon exports across timescales in two watersheds with different land uses. Hydrol. Process. 2014, 28, 5105–5121. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; McGoff, N.M.; Eaton, J.M.; Leahy, P.; Foley, N.; Kiely, G. Spatial and Seasonal Variation of Dissolved Organic Carbon (DOC) Concentrations in Irish Streams: Importance of Soil and Topography Characteristics. Environ. Manag. 2014, 53, 959–967. [Google Scholar] [CrossRef]
- Tzortziou, M.; Zeri, C.; Dimitriou, E.; Ding, Y.; Jaffe, R.; Anagnostou, E.; Pitta, E.; Mentzafou, A. Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland: CDOM dynamics in a transboundary river. Limnol. Oceanogr. 2015, 60, 1222–1240. [Google Scholar] [CrossRef]
- Ma, X.; Liu, G.; Wu, X.; Smoak, J.; Ye, L.; Xu, H.; Zhao, L.; Ding, Y. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau. Sci. Total Environ. 2018, 630, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Sillanpää, M.; Kang, S.; Yan, F.; Li, Z.; Zhang, H.; Li, C. Export of dissolved carbonaceous and nitrogenous substances in rivers of the “Water Tower of Asia”. J. Environ. Sci. 2018, 65, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Wang, G.; Mao, T.; Chen, X.; Huang, K.; Sun, X.; Hu, Z. Importance of active layer freeze-thaw cycles on the riverine dissolved carbon export on the Qinghai-Tibet Plateau permafrost region. PeerJ 2019, 7, e7146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, M.; Yin, Z.; Meng, F.; Liu, Q.; Cai, W.-J. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis. Curr. Opin. Environ. Sustain. 2012, 4, 170–178. [Google Scholar] [CrossRef]
- Dittmar, T.; Kattner, G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review. Mar. Chem. 2003, 83, 103–120. [Google Scholar] [CrossRef]
- Deng, R.; Yang, W.; Zhang, J.; Wu, F. Changes in litter quality of subalpine forests during one freeze-thaw season. J. Ecol. 2010, 30, 830–835. [Google Scholar]
- Zhao, Y.; Song, K.; Lv, L.; Wen, Z.; Du, J.; Shang, Y. Relationship changes between CDOM and DOC in the Songhua River affected by highly polluted tributary, Northeast China. Environ. Sci. Pollut. R 2018, 25, 25371–25382. [Google Scholar] [CrossRef]
- Guo, Y.D.; Song, C.C.; Wan, Z.M.; Lu, Y.Z.; Qiao, T.H.; Tan, W.W.; Wang, L.L. Dynamics of dissolved organic carbon release from a permafrost wetland catchment in northeast China. J. Hydrol. 2015, 531, 919–928. [Google Scholar] [CrossRef]
- Mann, P.; Hernes, P.; Six, J.; Aiken, G.; Tank, S.; McClelland, J.; Butler, K.; Dyda, R.; Spencer, R.; Holmes, R. Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical Measurements. Front. Earth Sci. 2016, 4, 1–18. [Google Scholar] [CrossRef]
- Andrew, A.A.; Del Vecchio, R.; Subramaniam, A.; Blough, N.V. Chromophoric dissolved organic matter (CDOM) in the Equatorial Atlantic Ocean: Optical properties and their relation to CDOM structure and source. Mar. Chem. 2013, 148, 33–43. [Google Scholar] [CrossRef]
- Wagner, S.; Jaffe, R.; Cawley, K.; Dittmar, T.; Stubbins, A. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System. Front. Chem. 2015, 3, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hestir, E.; Brando, V.; Campbell, G.; Dekker, A.; Malthus, T. The relationship between dissolved organic matter absorption and dissolved organic carbon in reservoirs along a temperate to tropical gradient. Remote Sens. Environ. 2015, 156, 395–402. [Google Scholar] [CrossRef]
- Stedmon, C.; Markager, S. Tracing the Production and Degradation of Autochthonous Fractions of Dissolved Organic Matter by Fluorescence Analysis. Limnol. Oceanogr. 2005, 50, 1415–1426. [Google Scholar] [CrossRef]
- Catalán, N.; Obrador, B.; Felip, M.; Pretus, J. Higher reactivity of allochthonous vs. autochthonous DOC sources in a shallow lake. Aquat. Sci. 2013, 75, 581–593. [Google Scholar] [CrossRef]
- Moran, M.A.; Sheldon, W.M., Jr.; Zepp, R.G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr. 2000, 45, 1254–1264. [Google Scholar] [CrossRef]
- Oleinikova, O.V.; Drozdova, O.Y.; Lapitskiy, S.A.; Demin, V.V.; Bychkov, A.Y.; Pokrovsky, O.S. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters. Geochim. Cosmochim. Acta 2017, 211, 97–114. [Google Scholar] [CrossRef]
- Ward, C.P.; Cory, R.M. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils. Environ. Sci. Technol. 2016, 50, 3545–3553. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Wang, Z.; Zhu, X.; Tang, H. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
- Lapierre, J.-F.; Guillemette, F.; Berggren, M.; Giorgio, P. Increases in terrestrially-derived carbon stimulate organic carbon processing and CO2 emissions in Canadian aquatic ecosystems. Nat. Commun. 2013, 4, 2972. [Google Scholar] [CrossRef]
Rivers and Month | Parameters | DOC | CDOM | SUVA254 | SR | Rivers and Month | Parameters | DOC | CDOM | SUVA254 | SR |
---|---|---|---|---|---|---|---|---|---|---|---|
CDOM | 0.324 | CDOM | −0.929 ** | ||||||||
Zagunao | SUVA254 | 0.214 | 0.739 | Zagunao | SUVA254 | −0.929 ** | 1 ** | ||||
Jun | SR | 0.571 | −0.414 | −0.143 | November | SR | −0.143 | −0.036 | −0.036 | ||
CDOM/DOC | 0.324 | 0.993 ** | 0.739 | −0.414 | CDOM/DOC | −0.929 ** | 1 ** | 1** | −0.036 | ||
CDOM | −0.443 | CDOM | 0.176 | ||||||||
Min | SUVA254 | −0.200 | 0.590 | Min | SUVA254 | −0.286 | 0.790 ** | ||||
Jun | SR | 0.224 | 0.097 | 0.467 | November | SR | 0.018 | 0.648 * | 0.699 * | ||
CDOM/DOC | −0.457 | 0.997 ** | 0.571 | 0.061 | CDOM/DOC | −0.467 | 0.733 * | 0.936 ** | 0.612 | ||
CDOM | −0.129 | CDOM | 0.467 | ||||||||
Bai | SUVA254 | −0.680 * | 0.637 * | Bai | SUVA254 | 0.285 | 0.976 ** | ||||
Jun | SR | −0.648 * | −0.127 | 0.188 | November | SR | 0.515 | 0.079 | 0.006 | ||
CDOM/DOC | −0.673 * | 0.830 ** | 0.998 ** | 0.103 | CDOM/DOC | 0.055 | 0.891 * | 0.952 ** | −0.176 | ||
CDOM | 0.476 | CDOM | 0.381 | ||||||||
Hei | SUVA254 | −0.762 * | −0.071 | Hei | SUVA254 | −0.333 | 0.524 | ||||
Jun | SR | 0.071 | −0.024 | 0.357 | November | SR | 0.333 | −0.262 | 0 | ||
CDOM/DOC | −0.762 * | −0.071 | 0.993 ** | 0.357 | CDOM/DOC | −0.595 | 0.357 | 0.500 | −0.833 * |
Main Class | Water Types and Samples | Variables | Min.–Max. | Mean ± SD |
---|---|---|---|---|
Type 1 | DOC | 19.65–47.83 | 29.62 ± 8.05 | |
a(355) | 4.36–15.90 | 12.32 ± 3.09 | ||
B2, B4, B6, H1–H5, H7–H8 | SUVA254 | 0.67–2.89 | 1.80 ± 0.65 | |
SR | 2.79–3.57 | 3.07 ± 0.21 | ||
TDN | 0.18–4.81 | 1.92 ± 1.30 | ||
FI | 1.37–1.42 | 1.39 ± 0.02 | ||
Class A | HIX | 11.55–15.56 | 13.58 ± 1.41 | |
Type 2 | DOC | 7.91–17.96 | 14.39 ± 4.27 | |
a(355) | 11.30–15.68 | 13.32 ± 1.48 | ||
B3, B5, B7–B10, H6 | SUVA254 | 2.97–7.20 | 4.41 ± 1.90 | |
SR | 2.88–3.57 | 3.16 ± 0.24 | ||
TDN | 0.35–1.52 | 0.99 ± 0.35 | ||
FI | 1.36–1.41 | 1.38 ± 0.017 | ||
HIX | 9.96–19.87 | 14.23 ± 3.40 | ||
Type 3 | DOC | 6.00–12.38 | 9.38 ± 3.34 | |
a(355) | 0.49–0.71 | 0.63 ± 0.099 | ||
Z4, Z6, M1, M9 | SUVA254 | 0.82–1.53 | 1.10 ± 0.30 | |
SR | 7.20–11.53 | 9.20 ± 1.96 | ||
TDN | 0.77–0.90 | 0.83 ± 0.06 | ||
FI | 1.41–1.81 | 1.55 ± 0.18 | ||
Class B | HIX | 1.42–3.78 | 2.64 ± 1.28 | |
Type 4 | DOC | 4.82–18.62 | 10.56 ± 4.00 | |
a(355) | 0–5.65 | 1.53 ± 1.68 | ||
B1, Z1–Z3, Z5, Z7 | SUVA254 | 0.20–1.99 | 0.78 ± 0.52 | |
M2–M8, M10 | SR | 0–6.30 | 3.98 ± 1.87 | |
TDN | 0.64–2.24 | 0.90 ± 0.40 | ||
FI | 1.40–1.56 | 1.49 ± 0.04 | ||
HIX | 0.90–8.29 | 3.28 ± 2.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Qin, J.; Sun, H.; Yang, J.; Liu, Y. Spatiotemporal Dynamics of Dissolved Organic Carbon and Freshwater Browning in the Zoige Alpine Wetland, Northeastern Qinghai-Tibetan Plateau. Water 2020, 12, 2453. https://doi.org/10.3390/w12092453
Zhang Z, Qin J, Sun H, Yang J, Liu Y. Spatiotemporal Dynamics of Dissolved Organic Carbon and Freshwater Browning in the Zoige Alpine Wetland, Northeastern Qinghai-Tibetan Plateau. Water. 2020; 12(9):2453. https://doi.org/10.3390/w12092453
Chicago/Turabian StyleZhang, Zheyue, Jihong Qin, Hui Sun, Jiyuan Yang, and Yanyang Liu. 2020. "Spatiotemporal Dynamics of Dissolved Organic Carbon and Freshwater Browning in the Zoige Alpine Wetland, Northeastern Qinghai-Tibetan Plateau" Water 12, no. 9: 2453. https://doi.org/10.3390/w12092453
APA StyleZhang, Z., Qin, J., Sun, H., Yang, J., & Liu, Y. (2020). Spatiotemporal Dynamics of Dissolved Organic Carbon and Freshwater Browning in the Zoige Alpine Wetland, Northeastern Qinghai-Tibetan Plateau. Water, 12(9), 2453. https://doi.org/10.3390/w12092453